Journal of Energy and Power Technology (JEPT) is an international peer-reviewed Open Access journal published quarterly online by LIDSEN Publishing Inc. This periodical is dedicated to providing a unique, peer-reviewed, multi-disciplinary platform for researchers, scientists and engineers in academia, research institutions, government agencies and industry. The journal is also of interest to technology developers, planners, policy makers and technical, economic and policy advisers to present their research results and findings.

Journal of Energy and Power Technology focuses on all aspects of energy and power. It publishes original research and review articles and also publishes Survey, Comments, Perspectives, Reviews, News & Views, Tutorial and Discussion Papers from experts in these fields to promote intuitive understanding of the state-of-the-art and technology trends. 

Main research areas include (but are not limited to):
Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) and grid connection impact
Energy harvesting devices
Energy storage
Hybrid/combined/integrated energy systems for multi-generation
Hydrogen energy 
Fuel cells
Nuclear energy
Energy economics and finance
Energy policy
Energy and environment
Energy conversion, conservation and management
Smart energy system

Power Generation - Conventional and Renewable
Power System Management
Power Transmission and Distribution
Smart Grid Technologies
Micro- and nano-energy systems and technologies
Power electronic
Biofuels and alternatives
High voltage and pulse power
Organic and inorganic photovoltaics
Batteries and supercapacitors

Archiving: full-text archived in CLOCKSS.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 4.3 weeks after submission; acceptance to publication is undertaken in 6 days (median values for papers published in this journal in the first half of 2020, 1-2 days of FREE language polishing time is also included in this period).

Current Issue: 2021  Archive: 2020 2019

Special Issue

Energy Transition of Buildings and Urban Activity Systems

Submission Deadline: August 31, 2021 (Open) Submit Now

Guest Editor

Susan Krumdieck, Professor

Professor, Heriot-Watt University, Scotland, United Kingdom.

Website | E-Mail

Research Interests: Energy Transition Engineering; Antimicrobial Coatings

About This Topic

Since the OPEC Oil Embargo in 1973, the OECD countries have understood the vulnerabilities of their energy supply to international suppliers. Successive US Presidents have made it a priority to explore and develop domestic oils, gas and renewable energy sources. Electricity generation shifted away from diesel power plants because of the oil shocks. The emergence of the fuel efficiency standards, and limited uptake of hybrid and compact vehicles has only marginally affected the demand for petroleum and diesel fuel. The oil price shock of 2007-2008 and the global economic recession arrested the growth in demand for transport fuels and for electricity in most countries. The biofuel mandates did not do much to cushion the global oil supply or price shock. Green recovery deals gave subsidies for wind and solar electricity generation, and while the growth has been impressive, the emissions every year from fossil fuels have not declined.

In 2015 the COP21 Paris Agreement between the partner countries called for reduction of emissions to achieve a 60% chance of keeping global warming below 2 oC by the end of the century. In simple terms, responding to the widely declared climate emergency will require 80% downshift in fossil fuel use across the entire globe by 2040. This is the energy transition.

Energy Transition requires wide ranging and sweeping changes in urban form, transport and organization. The challenge is to deliver improved quality of life and access to activities, goods and services while using 80% less fossil fuel and materials. This is an unprecedented undertaking. The past 100 years of technical and economic research has not had the context of constrained energy and material consumption, let alone downshift. This is the time for extreme creativity and unfettered ingenuity, solidly grounded in science and engineering reality.

This special issue is a renaissance of resourcefulness and insight. We invite breakthrough thinking with rigorous analysis of specific projects in cities around the world. The special issue has a strict requirement: all of the concept projects in energy transition must be executable, demonstrate metrics of wellbeing, and exhibit long-term viability (e.g. at least 100 years), while delivering 80% downshift in fossil fuel use and material lifecycle demand (e.g. products and waste).

This may be the most challenging call for research ever issued. Most researchers may never have set themselves this kind of a challenge. The energy transition challenge requires adopting a change of perspective from modelling “sustainable solutions” to proposing and testing out “fossil fuel downshift transformations”. Many countries of the world have declared Climate Emergencies. We urge researchers with the analytical tools and knowledge of existing systems to take up the energy transition challenge for cities and buildings.