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Abstract 

Breathing clean air is crucial for maintaining good human health. The air we inhale can 

significantly impact our physical and mental well-being, influenced by parameters such as 

particulate matter and gases (e.g. carbon dioxide, carbon monoxide, and nitrogen dioxide). 

Building on previous research that explored the effects of particulate matter (PM) in specific 

environments, analyzed using biometric indicators and machine learning models; this work 

focuses on the effects and estimation of inhaled nitrogen dioxide (NO2). This study involved a 

cyclist equipped with sensors to monitor various biometric parameters. In addition, an electric 

car following the cyclist measured the ambient NO2 levels using an onboard sensor. A total of 

329 biometric variables have been taken into account, of which 320 biometric variables are 

cognitive responses extracted using an electroencephalogram (EEG) and 9 biometric variables 

are physiological responses extracted using several sensors. Inhaled NO2 levels are first 

estimated initially by making use of all 329 variables, then using 9 physiological responses and 

finally using only 6 of the 9 physiological responses. The study also uses a ranking method to 

pinpoint which biometric variables most significantly estimate inhaled NO2 levels. 
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Furthermore, it investigates the linear and non-linear relationship between certain variables 

and inhaled NO2. The general precision of the prediction for the data set was moderate, as 

indicated by the coefficient of determination (R2) and the root mean square error (RMSE) 

between the true and estimated values of NO2 to be 0.35 and 5.41 ppb, respectively, in the 

test set. A higher accuracy in the prediction of lower values of NO2 levels was qualitatively 

observed using a scatter diagram and a Quantile-Quantile plot where the data were more 

plentiful. For more robust conclusions, additional data and refined machine learning models 

are necessary. 
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1. Introduction 

Recent studies have shown that more than half of the world’s population is exposed to increasing 

levels of air pollution and almost 99% of the global population breathes air that exceeds the air 

quality standards set by the World Health Organization [1, 2]. Common air pollutants include 

particulate matter, carbon dioxide, carbon monoxide, oxides of nitrogen, lead, sulfur dioxide, and 

ground-level ozone. These pollutants are known to be the cause of many adverse health-related 

effects such as airway inflammation, decreased cognitive performance, respiratory issues with 

increased cough and inflammation of the lungs, cardiovascular disease, and metabolic effects [3-9]. 

Nitrogen dioxide is one of the six air pollutants for which air quality standards have been 

established by the United States Environmental Protection Agency to reduce its level in the outdoor 

environment [10]. This air pollutant usually forms when coal, diesel, and other fossil fuels are 

burned at high temperatures. Increased levels of NO2 have been associated with cardiovascular and 

respiratory mortality [11]. Indoor NO2 levels are known to aggravate respiratory problems in 

children with asthma causing frequent cough and wheezing; exposure to NO2 has been associated 

with adverse health effects related to the lungs, respiratory system and increased hospitalization 

cases [12-15]. 

The studies mentioned showing the adverse health effects of inhaling NO2 in the human body 

have typically not examined very fine temporal and spatial scales. In this study, we introduce a novel 

approach where machine learning models are used to estimate inhaled NO2 using biometric 

variables of a participant and to understand the effects of inhalation of ambient NO2 on a small 

temporal scale (≈10 s) and a small spatial scale (≈2 m). 

This work is an extension of a previous study [16] that used observed autonomic responses of 

the body characterized by biometric sensors to accurately estimate inhaled particle concentrations, 

in particular, PM1 and PM2.5, using machine learning models from biometric variables of a single 

participant, and studied the effects of inhaled particles with very high precision with the coefficient 

of determination (R2) between true and estimated PM1 values of 0.91 in an independent test set. 

The estimation of inhaled CO2 concentrations using machine learning from biometric variables of 

participant autonomic responses was also found to be highly accurate, with R2 between the true 

and estimated values of CO2 being 0.98 in an independent test set [17]. In a different study, the use 
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of biometric variables to estimate PM2.5 with data collected from multiple participants was also 

found to be highly accurate, with R2 between the true and estimated values of PM2.5 being 0.99 in 

an independent test set [18]. Other studies have used machine learning models to accurately 

estimate PM2.5 from a series of more than 30 meteorological and environmental data such as 

aerosol optical depth (AOD), temperature, humidity, etc. [19]. 

In this study, we considered the concentrations of inhaled nitrogen dioxide in ambient air and 

characterized the autonomic response, so that we can use only the autonomic response to estimate 

the inhaled nitrogen dioxide concentration. As air pollution that includes NO2 as a component is 

known to have many adverse health effects related to cognitive performance, cardiovascular 

disease, respiration problems, and inflammation of the airways, as mentioned previously, several 

biometric variables were measured to capture as many autonomous cognitive and physiological 

responses as possible that are caused by inhaling outdoor air holistically. Biometric variables 

measured and used in this study include skin temperature, heart rate, respiration rate, 

electrocardiogram (ECG), galvanic skin response (GSR), blood oxygen saturation (SpO2), pupil 

diameter of the left eye, pupil diameter of the right eye, distance between pupils, and measurement 

of electrical activity across the surface of the brain using a 64 electrode electroencephalography 

(EEG). These measurements were made when a participant was riding a bicycle outdoors equipped 

with a biometric suite with an electric car behind equipped with multiple sensors to capture ambient 

NO2, PM, carbon dioxide (CO2) and nitric oxide (NO). 

Two of the main objectives of this study include (i) testing whether the methodology used to 

estimate and understand the effects of inhaled PM1 and PM2.5 from biometric variables of a person 

using machine learning can be extended to NO2. (ii) studying the effects of inhaled NO2 on human 

autonomic responses. One of the significant parts of the study is that it not only studies the effect 

of NO2 on the human body, but also studies the relationship between the biometric variables and 

tests if they are mutually related to each other linearly or nonlinearly. We also use Occam’s razor 

principle to test if a simpler model consisting of a smaller set of biometric variables can be used to 

produce similar or even better results. 

2. Materials and Methods 

The methodology implemented in this study includes two key parts (a) simultaneously measuring 

the biometric variables of a participant cycling a bicycle wearing a comprehensive biometric suite 

and a reference sensor measuring the ambient NO2 concentration and (b) using machine learning 

models to estimate the inhaled NO2 using the measured biometric responses of the participant. 

A complete description of the procedure of data collection is given in the previous work [16] 

while a brief description is given below. 

2.1 Experimental Paradigm and Holistic Sensing 

The experimental suite of sensors is shown in Figure 1. Figure 1a shows a photograph of the 

participant wearing the biometric suite followed by an electric car equipped with the reference 

sensor that measures ambient NO2. This biometric suite consisting of an array of devices measures 

the biometric variables (or features or predictor variables or autonomous cognitive and 

physiological responses) in the participant, such as: EEG, SpO2, heart rate, respiration rate, ECG, GSR, 
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skin temperature, pupil diameter of the left eye, pupil diameter of right eye and distance between 

the pupils. 

 

Figure 1 Experimental paradigm and devices used to measure the biometrics of the 

participant and the ambient NO2. (a) The participant riding a bicycle equipped with a 

biometric suite to measure biometric variables of the participant and an electric car that 

follows behind consisting of a NO2 sensor to measure ambient NO2. (b) Image of the 

device used to measure cognitive responses using the Cognionics EEG headset and 

devices to measure some physiological responses such as respiration rate, GSR, ECG, 

skin temperature, SpO2, heart rate. (c) Image of the Tobii Pro Glasses 2 device used for 

pupillometric measurements such as distance between the pupils, pupil diameter of the 

left eye, and pupil diameter of the right eye. (d) Device from 2B technologies that was 

located in the trunk of the car to measure ambient NO2. Source: Adapted from [16]. 

Using the measured variables, a total of 329 biometric variables have been considered, among 

which 320 variables are from the EEG headset device consisting of 64 electrodes (or channels) made 

by Cognionics (https://www.cgxsystems.com/mobile-128, accessed February 20, 2024) with a 

sampling rate of 500 Hz. Six physiological responses: skin surface temperature, ECG, SpO2, GSR, 

respiration rate, and heart rate were measured using an AIM Generation 2 instrument from 

Cognionics (https://www.cgxsystems.com/auxiliary-input-module-gen2, accessed 20 February 

2024) with a sampling rate of 500 Hz; the image of the devices used is shown in Figure 1b. The rest 

of the three measured biometric variables are pupillometric measurements: pupil diameter of the 

right eye, pupil diameter of the left eye, and distance between the pupil which were measured using 

the Tobii Pro Glasses 2 (https://www.tobii.com/products/discontinued/tobii-pro-glasses-2, 

accessed 20 February 2024) at a sampling rate of 100 Hz. The image of the Tobii pro Glasses 2 is 

shown in Figure 1c. The measurement of ambient NO2 was done using the “Model 405 nm 

NO2/NO/NOx Monitor” from 2B technologies (https://2btech.io/items/other-monitors/model-405-
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nm-no2-no-nox-monitor/, accessed 20 Feb 2024). The image of the NO2 sensor from 2B 

technologies is shown in Figure 1d. The sampling rate of the instrument is 0.2 Hz or 1 measurement 

every 5 seconds. 

Changes in autonomic physiological responses of the participant cycling outdoors were captured 

using the biometric suite consisting of several sensors and ambient NO2 is measured simultaneously. 

Natural variability and fluctuation in NO2 levels were observed and no artificial sources were used. 

An electric car was used so that the sensor measurements taken of NO2 in the ambient air were not 

influenced by any car emissions, as there were none. A brief description of the biometric variables 

is given below. 

• Electroencephalography (EEG): EEGs measure the electrical activity on the surface of the brain 

as a result of the simultaneous activity of groups of neurons. It measures the potential 

difference (or voltage) between an electrode and a reference electrode. The reference 

electrode used in this work is a virtual reference that averages the potential of all electrodes. 

The data received from the device are a time series of voltage. The signal noise that can be 

induced in the voltages observed on the electrodes due to movements of the head, tongue, 

jaws, neck, and eyes, blinking, and swallowing were not removed. Data obtained from each 

electrode as a voltage time series can be transformed from the time domain to the frequency 

domain, which can be done using the Welch method [20] and was implemented using scipy 

[21]. The transformation from time domain to frequency domain gives a power spectrum 

graph with the power spectral density on the Y-axis in units of (V2/Hz) and the frequency on 

the X-axis in units of Hz. This frequency is divided into bands: delta (1-3 Hz), theta (4-7 Hz), 

alpha (8-12 Hz), beta (13-25 Hz), and gamma (25-70 Hz), each corresponding to a state of the 

brain. Transforming the data as a time series of each 64 electrodes from time domain to 

frequency domain and dividing the frequency into 5 parts each gives a total of 320 variables 

from the EEG headset. The codes to retrieve the data and transform from time domain to 

frequency domain are uploaded in Github and the link is in the supplementary materials. 

• Electrocardiography (ECG): An ECG was used to measure the electrical activity of the heart 

and was measured in units of microvolts. These electrical impulses create contractions in 

various parts of the heart that maintain blood flow in the human body, and studying these 

impulses helps to understand the pace and rhythm of the heartbeat, as well as the strength 

and timing of the measured impulses [22]. The sensor was placed on the upper part of the 

chest. 

• Galvanic Skin Response (GSR): The sweat glands in our body secrete sweat as an involuntary 

response that can be triggered by factors such as physical exercise, ambient temperature, and 

in response to stress or emotional stimuli. These sweat glands make the skin more conductive 

and GSR (or skin conductance) measures the electrical conductivity of the skin [23]. The sensor 

was placed on the upper back of the participant and measured skin conductivity in units of 

µSiemens. 

• Oxygen saturation (SpO2): Measures oxygenated hemoglobin compared to deoxygenated 

hemoglobin [24] as a percentage of saturation. The sensor was placed behind the left ear of 

the participant. 

• Respiration rate: Measured using the GSR device. The respiration rate was measured as the 

breathing rate per minute. 

• Skin temperature: Since a rectal probe core body temperature is extremely uncomfortable to 
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measure, the temperature of the skin surface was measured where the sensor was placed on 

the right temple of the participant, measured in units of °C. 

• Heart rate: Measured as the number of heart beats per minute using the same device used to 

measure SpO2. 

• Average pupil diameter: The average pupil diameter of each eyes was calculated using the 

measured pupil diameter of the left eye and the pupil diameter of the right eye. The units 

used are millimeters (mm). 

• Distance between pupils: Measures the 3-dimensional distance between pupil centers in units 

of millimeters (mm). 

• Difference between pupil diameter: Indicates the difference in the pupil diameters of the two 

eyes calculated using the pupil diameter of the left eye and the pupil diameter of the right 

eye. The units used are millimeters (mm). 

As the measurement rate of the devices used to measure the biometric variables and ambient 

NO2 are different, the entire data set was down sampled to 0.2 Hz or 1 data point every 5 second 

(the NO2 observation data rate). 

2.2 Data Collection 

The biometric variable data collection process was carried out on a single participant due to 

COVID-19 constraints. To mitigate the issue of the number of participants used, data collection took 

place on three different days in 2021: May 26, June 9 and June 10 with two trials on each day. The 

location of data collection was in Breckenridge Park in Richardson, TX. Because of the movement of 

the sensors, the measurements can sometimes give an erroneous reading and sometimes no 

reading at all. Moreover, readings for NO2 from the sensor had additional quality control checks, as 

the manufacturer outlined, to be considered good quality data. 

These criteria included (i) the flow rate of the sample gas entering the sensor to be between 1400 

and 1600 cc/min, (ii) the ozone flow rate to be between 60 and 80 cc/min, (iii) the cell photodiode 

voltage (PDV) to be at least 0.6 volt, and (iv) the PDV ozone generator to have a voltage of at least 

0.1. Data were cleaned using the Pandas library [25, 26] which reduced the number of data points. 

The process of data collection, down sampling and data cleaning gave a total of 582 data points with: 

136, 23, 126, 120, 132, 45 data points for Trail 1, Trial 2, Trial 3, Trial 4, Trial 5 and Trial 6 respectively, 

essentially a dataset with 582 rows and 330 columns of which 329 columns are the biometric input 

variables, and the last column is the target variable NO2 we would like to estimate and the 582 rows 

are the measurements made for 582 discrete time steps. 

The location of the bike ride was measured using a GPS sensor on the bike. Figure 2 shows the 

location where the data collection took place for Trials 2, 3, 4, 5, and 6. As the GPS sensor did not 

work during Trial 1, no exact location was monitored but the route used was the same as that of 

Trial 3 and Trial 5. Each of the circular dots in the subfigure shows the spot where all biometric 

variables and ambient NO2 were measured simultaneously with the corresponding ambient NO2 

concentration in the color map. The arrows in the subfigures indicate the initial direction of the ride. 

Variation in NO2 levels can be observed in all five trials, which could be due to nearby traffic 

emissions. 
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Figure 2 Location of data collection for 5 of the 6 trials. Each of subfigure (a), (b), (c), (d) 

and (e) shows the location and the places where the measurement of biometric 

variables and ambient NO2 was performed simultaneously with the corresponding value 

of NO2 on the color map. The arrows indicate the initial direction of the bicycle ride. 

Since all data were quality controlled and downsampled at one data point every 5 seconds, we 

can sometimes see a discontinuous path rather than a continuous path in each of the trials, which 

is prominent in trial 2 in Figure 2a, while an almost continuous path can be seen in Figures 2b-2d. 
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2.3 Data Analysis and Machine Learning Model Development 

The estimation of inhaled NO2 using biometric variables was performed using a Random Forest 

[27] algorithm for nonlinear, nonparametric, multidimensional regression using the Ensemble 

Random Forest Regressor package from scikit-learn [28] using default parameters. The biometric 

variables were used as input features for the machine learning model to estimate the predictor 

variable, which in this case is the ambient air concentration of inhaled NO2. The estimated values 

are then compared with the true values measured by the NO2 sensor placed in the electric car. 80% 

of the data was used to train the machine learning model, the remaining 20% was used as an 

independent test set. To quantify the precision of the prediction, the determination coefficient (R2) 

and the root mean square error (RMSE) are calculated between the actual and estimated values of 

NO2. The scatter plot and the Quantile-Quantile plot between the actual and estimated values of 

NO2 are also plotted for a qualitative test of prediction precision. A time series graph of the actual 

values of NO2 overlaid with the estimated values of NO2 is also plotted for a qualitative analysis of 

the prediction. 

To identify the biometric variables that were the most important or contributed the most to the 

estimation of inhaled NO2, SHAP values (SHapley additive explanations) [29, 30] were used to 

classify the effectiveness of the biometric variables in descending order. Combining the top 9 

predictor variables identified using SHAP values and the target variable NO2, a 10 × 10 Pearson 

correlation coefficient matrix is calculated to identify the linear relationship between the variables. 

A 10 × 10 matrix of mutual information of the same variables is also calculated to capture the 

nonlinear relationship between the variables using a package from scikit-learn [28]. These values of 

mutual information are zero for variables that are independent of each other, and the number keeps 

on increasing if the relationship is stronger but typically is below 5. 

All experimental protocols were approved by the Institutional Review Board of the University of 

Texas at Dallas and informed consent was received from the participant. 

3. Results 

The process of estimating the inhaled concentration of NO2 from the biometric variables using 

machine learning was carried out in three different ways: first, we used all 329 biometric variables 

that were measured or calculated. The machine learning model in which 329 biometric variables are 

used to estimate inhaled NO2 is quite complex as the number of input parameters is large, especially 

considering the small number of time points collected due to the constraints placed during COVID. 

Therefore, in the second machine learning model, the number of biometric variables used to 

estimate NO2 was reduced and only the nine physiological responses were used to estimate inhaled 

NO2. In the third and final model, the number of biometric variables was reduced to just six, chosen 

based on the importance ranking provided by the SHAP value plot to make the machine learning 

model even simpler, following Occam’s razor. 

3.1 Using 329 Features 

Using 329 features as input features to estimate inhaled NO2 using the Random Forest algorithm 

from scikit-learn, the results in the training data are very high, which is to be expected since this 

part of the data set is used by the algorithm for learning. The coefficient of determination (R2) and 
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RMSE between the actual and estimated values of NO2 were 0.92 and 2.90 ppb, respectively. Figure 

3a shows a bar graph of the RMSE values in the training set in blue and those in the testing set in 

orange. However, the results in the testing set were not high as R2 and RMSE between the actual 

and the estimated values of inhaled NO2 were found to be 0.16 and 9.62 ppb, respectively. It is to 

be noted that since the model is complex with a large number of features, these numbers, however, 

do change depending on how the data is shuffled. 

 

Figure 3 Model performance and top 9 feature importance plot for estimating inhaled 

NO2 using 329 biometric features. (a) RMSE between the actual and estimated values of 

NO2 in the training and testing set. (b) Top 9 features in estimating NO2 as identified by 

SHAP values plotted in a beeswarm plot. (c) Scatter plot between the actual and 

estimated values in the training and the test set. (d) Quantile-Quantile plot between the 

actual and estimated values of NO2 with the overlaid percentiles. 

Figure 3c shows a scatter plot between the true values of NO2 and the estimated values of NO2 

with the data points used in training represented by blue circular dots and the data points in the 

test set represented by the orange “x” sign with a black 1:1 line overlaid. Data points with an exact 

prediction will be in the black 1:1 line. The diagram shows that for smaller values of NO2 where there 

is an abundance of data, most of the data points lie close to the 1:1 line, while for higher values of 
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NO2 where there is scarcity of data points both in the training set and the testing set, the data points 

deviate from the 1:1 line. Figure 3d shows a Quantile-Quantile graph with true values of NO2 on the 

X-axis and estimated values of NO2 in the Y-axis overlaid with a red 1:1 line. Data points with an 

exact prediction will be on the red 1:1 line. The Quantile-Quantile plot in Figure 3d also shows the 

same results. It can be seen that the quantiles are very close to the red 1:1 line for over 90% of the 

data. On the other hand, for higher values of NO2 the quantiles deviate to a large extent from the 

1:1 red line. Figure 3b shows the SHAP values of the top 9 features in a beeswarm plot. 

As the SHAP value for the ninth feature is nearly zero, all biometric variables below have even 

smaller SHAP values and therefore have almost no contribution to the estimation of the predictor 

variable NO2. Each of the dots represents the SHAP value of the corresponding data of the feature, 

so each biometric variable has 582 circular dots in the diagram. A color map is shown on the right 

side with high feature values in red and low feature values in blue. X-axis of the plot shows the SHAP 

value in ppb of the corresponding value of the feature. The biometric variables are arranged in 

descending order according to the absolute value of the SHAP values of the feature. The magnitude 

of SHAP values for ECG, average pupil diameter, and skin temperature is higher compared to rest of 

the features, so the ranking of these three features tends to remain consistent. However, as the 

model is complex and the SHAP values for some of these features are close to each other, the 

ordering changes a little depending on how the data are shuffled. The figure shows only one instant 

when the algorithm was run. One of the most important features for estimating inhaled NO2 was 

found to be the ECG, which is expected, as environmental NO2 has been associated with 

cardiovascular issues [11, 31]. The figure also shows some of the other physiological responses that 

were crucial to estimate inhaled NO2 which include skin temperature and GSR. These two biometric 

variables were also some of the important variables that were useful in predicting PM1, PM2.5 [16] 

and CO2 [17] using biometric variables. Heart rate and respiration rate were also some of the other 

important features. Since the participant is cycling, which involves a lot of physical work, there will 

be changes in body temperature, sweating, heart rate, and respiration rate. However, inhalation of 

NO2 and other components of air quality is known to affect the respiratory system, create 

cardiovascular problems, inflammation of the airways and possibly cause these autonomous 

physiological responses. 

Other biometric variables in the list of the top 9 features include some EEG electrodes. As 

electrodes are named according to the 10-10 nomenclature system [32], the location of the 

electrode can be determined by its name. The FT10 electrode is located between the frontal and 

temporal lobes on the right side of the brain. The frontal lobe is involved in tasks such as making 

decisions and movement, while the temporal lobe is involved in tasks such as speech, musical 

rhythm, short-term memory, and smell [33]. Similarly, the P8 electrode located on the left side of 

the brain in the parietal lobe seems to have a very small magnitude of SHAP value, therefore all 

other features below it have lower SHAP values, therefore having less of a contribution to predict 

inhaled NO2. 

The 10 × 10 Pearson correlation coefficient matrix in Figure 4a shows that most of the variables 

are not linearly related with each other and do not have linear relation with the target variable as 

well. The 10 × 10 mutual information matrix of the same variables in Figure 4b, shows the non-linear 

relation between the variables. 
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Figure 4 10 × 10 Pearson’s correlation and mutual information matrix (a) Pearson’s 

correlation matrix for 10 variables to identify linear correlation. (b) Mutual information 

matrix for 10 variables to identify linear and non-linear relation. 

Figure 4b, shows that skin temperature, GSR, heart rate, and respiration rate had higher mutual 

information with NO2 which is to be expected as the SHAP values for these features were also high. 

There was nonlinear relationship between the biometric variables as well, particularly, ECG with 

skin temperature, GSR, respiration rate; skin temperature with GSR, respiration rate; GSR with heart 

rate, respiration rate; heart rate with respiration rate depicting that the biometric variables are 

mutually related with each other. 

3.2 Using a Reduced Number of Features 

We now simplify the machine learning model by reducing the number of features to estimate 

inhaled NO2. First, we consider all of the 9 physiological responses and then select only 6 of the top 

features based on SHAP values. 

The results obtained from reducing the number of features to estimate inhaled NO2 from 329 to 

9 appear to be similar. The coefficient of determination (R2) between the true and estimated values 

of NO2 in the train and the test set was 0.92 and 0.33 respectively. As shown in the bar graph in 

Figure 5a, the RMSE between the true and estimated values of NO2 in the training set was 2.85 ppb 

and 5.90 ppb, respectively. This is similar to the case where all 329 biometric variables were used 

to estimate inhaled NO2. ECG, respiration rate, and skin temperature are some of the physiological 

responses that were most effective in estimating inhaled NO2 as shown by the ranking of these 

variables in the beeswarm plot in Figure 5b, which is similar compared to Figure 3b. The 

effectiveness of variables such as the average pupil diameter, SpO2 and pupil distance seems to be 

small in estimating inhaled NO2 as their SHAP values are small compared to other features as shown 

in Figure 5b. While these results can change a little based on how the data is shuffled, now that the 

model is simpler, these results will be more or less consistent every time the algorithm is run. 
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Figure 5 Performance and top 9 feature importance plot for estimating NO2 using 9 

physiological responses. (a) RMSE between the actual and estimated values of NO2 in 

the training and testing set. (b) Top 9 features for the estimation of NO2 identified using 

SHAP values and plotted in a beeswarm plot. 

Since features such as the average diameter of the pupils, SpO2 and pupil distance had little effect 

on the estimation of inhaled NO2, we now test the accuracy of the prediction by removing these 3 

features among the 9 features. Six of the features now used to estimate inhaled NO2 are: ECG, 

respiration rate, skin temperature, difference in pupil diameter, GSR, and heart rate. The 

determination coefficient (R2) and the RMSE between the true values and estimated values of NO2 

are 0.35 and 5.41 ppb in the test set. The results are again similar when 9 physiological responses 

were taken into account for the estimation of inhaled NO2. 

Table 1 shows the summary of the results obtained. The determination coefficient (R2) and the 

RMSE between the true values of NO2 and the estimated values of NO2 in the training and testing 

set are shown with the corresponding number of biometric variables used to make the prediction. 

Table 1 Summary of quantifying the accuracy of the estimation of inhaled NO2 with the 

corresponding number of features used. 

Number of biometric variables Trian R2 Test R2 Train RMSE Test RMSE 

329 0.92 0.16 2.90 ppb 9.62 ppb 

9 0.92 0.33 2.85 ppb 5.90 ppb 

6 0.92 0.35 3.05 ppb 5.41 ppb 

From Table 1, we can see that the results are similar and sometimes even improve (when the 

algorithm is rerun) even considering only a subset of variables. This in fact does align with the 

Occam’s razor principle, and we can select just a part of these variables to make the model simpler, 

which usually generalizes well. 

A scatter plot and Quantile-Quantile plot by considering 9 physiological responses and by 

considering 6 physiological responses to estimate inhaled NO2 are shown in Figure 6. 
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Figure 6 Scatter and quantile-quantile plot between true and estimated values of NO2. 

(a) Scatter plot between the actual and estimated values in the training and the test set 

considering 9 physiological responses. (b) Quantile-Quantile plot between the actual 

and estimated values considering 9 physiological responses with the percentiles of the 

distribution overlaid. (c) Scatter plot between the actual and estimated values in the 

training and the test set considering 6 physiological responses. (d) Quantile-Quantile 

plot between the actual and estimated values considering 6 physiological responses 

with the percentiles of the distribution overlaid. 

Figure 7 shows a time series of the actual values of NO2 overlayed with the estimated values of 

NO2 when only six physiological responses were used for the prediction of inhaled NO2. True values 

of NO2 are shown on a continuous orange line, while the estimated values of NO2 are shown on a 

dotted blue line. The shaded background represents different trials for each of the six trials. Lines 

are stopped whenever trials differ. It can be seen that for most time series, especially when the NO2 

values are small, where there is a large amount of data, the true values of NO2 are close to the 

estimated values. 
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Figure 7 Time series plot of the true NO2 values with the estimated values of NO2 

overlaid for all the 6 trials of data collected on 3 separate days with 2 trials on each day 

when 6 biometric variables were used for the prediction of inhaled NO2. 

4. Discussion 

Measurements of autonomic physiological responses made on small temporal and spatial scales 

coupled with the use of machine learning models to predict particulate matter, in particular, PM1 

and PM2.5 and even gases such as CO2 were found to be an effective methodology [16-18]. The basis 

of this study is to investigate whether autonomous physiological and cognitive changes induced by 

air pollution components such as NO2 can be used to estimate and understand the effects of inhaled 

NO2. The results when 9 and 6 biometric variables were used to estimate inhaled NO2 appear to be 

moderate as indicated by the coefficient of determination (R2) and the RMSE values between the 

estimated and true values of NO2 as shown in Table 1. NO2 as an air pollution component is known 

to have many health-related effects [11-15], the use of biometric variables to estimate the gas itself 

seems to be an approach in the right direction. 

However, the result of the estimation is not as accurate as those for CO2 and particulates, which 

could be attributed to two possible reasons: 

• Machine learning models require a large number of training data to learn the parameters that 

minimize error in the best possible way. The scatter diagram in Figure 3c, Figure 6a and Figure 

6c shows that most of the data points lie close to the black line 1:1 where the NO2 values are 

small and there is an abundance of data points, while the number of data points in the training 

set for NO2 values above 30 ppb is less than 15 and the number of data points in the test set 

is less than 5. As the value of NO2 increases, there is a scarcity of data points for the machine 

learning model to learn from the training data and then test on the test data points. Thus, the 

data points begin to deviate from the 1:1 line. A similar result is also seen in the Quantile-

Quantile graph in Figure 3d, Figure 6b and Figure 6d. The Quantile-Quantile plot shows that 

more than 90% of the data points are below 20 ppb. Below this margin, the Quantile-Quantile 

plot is very close to the 1:1 red line while points deviate from the red 1:1 line as the number 

of data points decreases for higher values of NO2.  

• The concentration of PM1 particles in ambient air for the tests on 3 separate days ranged 

between 0.708 to 7.655 µg/m3 whereas the concentration of NO2 ranged from 0.1 to 77.1 ppb. 
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These PM1 particles, with their small size, can easily mix in the air and penetrate deep into the 

lungs and bloodstream. Therefore, autonomic responses were likely dominated by these PM1 

particles rather than NO2, which made the estimate not as high as that obtained for PM1 

where R2 = 0.91 [16]. 

Since the prediction of NO2 was observed to be accurate for smaller values of NO2 as qualitatively 

indicated by the scatter diagram in Figure 3c, Figure 6a and Figure 6c and the Quantile-Quantile 

plots in Figure 3d, Figure 6b and Figure 6d, the second plausible reason is probably the reason that 

the precision is not high in estimating NO2 for the entire data set. This hypothesis is also supported 

by the time series plot in Figure 7 where the true values of NO2 are close to the estimated values of 

NO2 for lower values of NO2. These results suggest an abundance of data points which can be 

achieved in multiple ways, such as (a) the use of an instrument that measures ambient NO2 with a 

high frequency of data collection. (b) The use of multiple participants and collecting data over a long 

period of time can possibly improve the results of the prediction. 

The use of Occam’s razor principle to simplify the model, which generally generalizes well, seems 

to be well aligned in this case, as indicated by the R2 and RMSE values between the true and 

estimated values of NO2 as shown in Table 1. These metrics are similar when the number of features 

was reduced. The scatter diagram in Figure 3c, Figure 6a and Figure 6c and the Quantile-Quantile 

plots in Figure 3d, Figure 6b and Figure 6d also shows the overall structure of these plots are similar. 

Therefore, rather than using a large set of biometric variables, making use of a subset of variables 

seems to be an efficient way to estimate inhaled NO2. 

Two of the limitations in this study include one being the number of participants and the other 

being the noise in the EEG data. This study included data measurements on a single participant. To 

generalize the result, data collection should be carried out on a larger number of participants with 

an abundance of data over a range of NO2 values. Also, EEG signal measurement was done when 

the participant was doing physical work resulting in frequent blinking, jaw clenching, tongue 

movement, etc. which distorts the EEG signal as mentioned before. Removing these artifacts, which 

most of the time can be a combination of artifacts, is a challenging task on its own. 

Extension of this work involves the collection of large number of data as required by machine 

learning models which can be achieved by procedures mentioned before. This may possibly 

significantly increase the prediction. Better machine learning models, which can train and test on a 

small number of data points, could also make the prediction better for the current dataset and is 

also another approach that could possibly provide better results. Furthermore, since the variation 

of NO2 was dependent on ambient air, confounding variables are expected, which can be studied 

using casual analysis. To better understand the direct effects of NO2 inhalation, participants could 

also be placed indoors with artificial variation of NO2. The methodology could also be used to test 

the effects and estimation of other pollutants such as carbon monoxide. 

5. Conclusion 

The methodology of making use of machine learning for regression to estimate inhaled NO2 by 

using the measured autonomic response on a small temporal and spatial scale in 

microenvironments seems to be effective for small values of NO2 under 20 ppb where 90% of the 

data set was most abundant but the precision was only moderate for the entire data set as the 

coefficient of determination and RMSE between the actual and estimated values were found to be 
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0.35 and 5.41 ppb, respectively, in the test set. Large numbers of data collected from multiple 

participants over a range of target variables can be used so that machine learning models can be 

better trained and then to be tested on an independent test set. Machine learning models that can 

work on a limited set of data could possibly improve the results as well. Furthermore, instead of 

making use of a large number of biometric variables, which in some cases tends to overfit the data, 

a subset of variables can be used to make the model simpler, which could generalize well. 

Abbreviations 

The abbreviations used in the study are as follows: 

ppb Parts per billion 

EEG Electroencephalography 

GSR Galvanic Skin Response 

ECG Electrocardiography 

SpO2 Blood Oxygen Saturation 

PM Particulate Matter 

RMSE Root Mean Square Error 
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Additional Materials 

The code and data are publicly available and are available on GitHub: 

https://github.com/mi3nts/Estimate-inhaled-NO2. The entire data set is also available in Zenodo: 

https://zenodo.org/records/10345982 (accessed on December 11,2023). 
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