

Figure S1 AFM images of surface topographies of prepared palladium catalyst supported on ITO and its precursors. a) **ITO@OH** (hydrophilic treatment), b) **ITO@APTES** (silanization), c) **ITO@Thi** (thienyl Schiff base graft) and d) **ITO@Pd-Thi** (Pd-thienyl Schiff based complex grafted).

Monolayer	ITO@OH	ITO@APTES	ITO@Thi	ITO@Pd-Thi
Rms(nm)	48.4	34.4	41.5	29.4
		e 1447 — e 1603 — d c b a		8
	(B) d c b a 3000 250	$\begin{array}{c} 1442 \\ 1595 \\ \hline 0 \\ 2000 \\ Wayanumbars(c) $	1500 100 m ⁻¹	4

Table S1 Data of Rms of ITO@OH, ITO@APTES, ITO@Thi and ITO@Pd-Thi monolayers.

Figure S2 Raman spectra of (A) a, ITO@Thi; b, ITO@PThi; c, ITO@PTT; d, ITO@PTF; e, ITO@PTM. (B) a, ITO@Pd-PThi; b, ITO@Pd-PTT; c, ITO@Pd-PTF; d, ITO@Pd-PTE.

Figure S3 XPS survey spectrum of (A) ITO@Pd-PThi, (B) ITO@Pd-PTT, (C) ITO@Pd-PTF and (D) ITO@Pd-PTM.

Cat.	Pd 3d5/2	Pd 3d3/2	N1s	S2p	Cl2p	Si2p
ITO@Pd-PThi	343.02	337.67	400.22	164.46	198.31	102.62
ITO@Pd-PTT	343.17	337.87	399.92	164.26	198.16	102.70
ITO@Pd-PTF	343.07	337.82	400.02	164.32	198.17	102.62
ITO@Pd-PTM	343.22	337.97	400.08	164.31	198.33	102.39

Table S2 Positions of BE peak in catalyst monolayers.

Table S3 Summaries of Pd contents of catalysts prepared^a.

Cat.	ITO@Pd-Thi	ITO@Pd-PThi	ITO@Pd-PTT	ITO@Pd-PTF	ITO@Pd-PTM
(10 ⁻⁹)					
mol∙c	1.12	1.08	1.10	1.11	1.05
m⁻²					

^aSubstrates: 2.5cm*1 cm*0.1 cm.

Table S4 Suzuki coupling reaction of haloarense with phenylboronic acid^a.

Catalysis Research 2022; 2(1), doi:10.21926/cr.2201	.003
---	------

Entry	Ar-X	Ar-B(OH) ₂	Product	Yield (%) ^b
1	——————————————————————————————————————	B(OH)2		99
2	── Br	B(OH)2	$\bigcirc - \bigcirc$	85
3	H ₃ CO-	B(OH)2	Н3СО-	91
4	H ₃ CO	B(OH)2		88
5		B(OH)2	OCH ₃	74
6		B(OH)2	02N-	97
7	Br	B(OH)2		92
8	OHCBr	B(OH)2	онс	90
9	NCBr	B(OH)2		99
10	∕I	B(OH)2	$\bigcirc - \bigcirc$	99
11	-CI	B(OH)2		trace
12	⟨⊂	B(OH)2	$\bigcirc - \bigcirc$	trace
13	O ₂ N-Cl	—B (OH) ₂	02N-	7
14	——————Br	H ₃ CO		41
15	—————Br	B(OH) ₂		30
16	——————————————————————————————————————	OCH ₃ —B(OH) ₂		9
17	——————————————————————————————————————	H ₃ CO B(OH) ₂	H ₃ CO	10
18	Br	COCH ₃ —B(OH) ₂	COCH ₃	Trace

^a Reaction condition: 4-Bromotoluene 0.25 mmol, PhB (OH)₂ 0.30 mmol, base 0.30 mmol, substrate: 2.5 cm^{*}1 cm^{*}0.1 cm (2.5 cm²* 1.11×10^{-9} mmol/cm²), solvent 5.0 mL. Reaction time: 24 h.

^bIsolated yield.

Table S5 Comparisons of the results in Suzuki coupling reaction catalyzed by the catalysts supported on different supports.

Entry	Catalyst	Reaction	Х	Yield (%)	TON	Ref
		conditions			(mol/mol _{Pd})	
This	ITO@Pd-PTF	K ₂ CO ₃ , EtOH: H ₂ O,	Br(4-Me)	99 ^a	45000	This
work	(0.0022%	60 °C, 24h.				work
	mmol) (respect to the p-					
	bromotoluene)					
1	Poly-2a film	K ₂ CO ₃ , Toluene/	I(2-F)	91	182	8
	(0.17mmol%) (content of	EtOH, 80 °C 40 h				
	Pd, 0.5% respect to the					
	iodoarene)					
2	ECP-B3TIE (0.0051%mmol)	K ₃ PO ₄ .7H ₂ O, H ₂ O,	Br(4-Me)	94	18345	17
	(respect to the	TBAB, 40°C,48 h.				
	<i>p</i> -bromotoluene)	SP=12 mN/m				
3	Poly-3-ITO	K ₂ CO ₃ , Toluene/	Br(P-CN)	80	160	9
	(0.17 mmol%) (content of	MOH, 85 °C 16h				
	Pd,0.5% respect to the					
	iodoarene)					

^a Isolated yield.

Additive: Characterization of coupling compounds in Suzuki coupling reaction

4-Methylbiphenyl (Table S4, Entry 1): ¹H NMR (400MHz, CDCl₃, δ ppm): 2.33(s, 3H), 7.24(d, J=7.88 Hz, 2H), 7.33(t, J=7.08 Hz, J= 7.32 Hz, 1H), 7.43(t, J=7.56 Hz, J= 7.64 Hz, 2H), 7.53(d, 6.40 Hz, 2H), 7.62(d, 7.24 Hz, 2H).

2-Methylbiphenyl(Table S4, Entry 2): ¹H NMR (400MHz, DMSO, δ ppm): 7.52-7.48(m, 2H), 7.44-7.42 (m, 3H), 7.36-7.34(m, 4H).

4-Methoxybiphenyl(Table S4, Entry 3): ¹H NMR (400MHz, DMSO, δ ppm): 7.59-7.61(m, 4H), 7.44-7.41(m, 2H), 7.29-32(m, 1H), 7.02(d, J=8.72, 2H), 3.80(s, 3H).

3-Methoxybiphenyl(Table S4, Entry 4): ¹H NMR (400MHz, DMSO, δ ppm): 7.68-7.66(d, J=10.23 Hz, 2H), 7.48-744(m, 2H), 7.40-7.36(m, 2H), 7.24-7.7.19(m, 2H), 6.96-6.93(m, 1H), 3.83(S, 3H).

2-Methoxybiphenyl(**Table S4, Entry 2**): ¹H NMR (400MHz, DMSO, δ ppm): 7.47-7.45(m, 2H), 7.41-7.38(m, 2H), 7.30-7.36(m, 2H), 7.26-7.29(dd, J2=1.8 Hz, J1=7.52 Hz,1H), 7.11-7.09(d,J=8.28 Hz, 1H), 7.02(m, 1H), 3.75(s, 3H).

4-nitrobiphyenyl(Table S4, Entry 6): ¹H NMR (400MHz DMSO, δ ppm): 8.28-8.26(d, J=8.44 Hz,2H), 7.94-7.92(d, J=8.20Hz,2H), 7.77-7.75(d, J=7.64Hz,2H), 7.44-7.54(m, 3H).

2-nitrobiphyenyl(Table S4, Entry 7): ¹H NMR(400MHz, DMSO, δ ppm): 8,43(s, 1H), 8.24-8.23(m, 1H), 8.16-8.14(d, J=7.88Hz, 1H), 7.79-7.85 (m, 3H), 7.54-7.51(m, 2H), 7.48-7.44(m, 1H).

4-Formylbiphenyl(Table S4, Entry 8): ¹H NMR (400 MHz, DMSO, δ ppm): 10.04(s, 1H), 7.98-7.96(d, J=8.12 Hz, 2H), 7.87-7.85(d, J=8.04 Hz, 2H), 7.73-7.31(d, J=6.88 Hz, 2H), 7.40-7.50(m, 3H).

4-Biphenylacetonitrile (Table S4,Entry 9): ¹H NMR (400MHz, DMSO, δ ppm): 7.42-7.52(m, 3H), 7.72(d, J=7.16Hz,2H), 7.85(d, J=8.56Hz, 2H), 7.90(d, J=8.56Hz, 2H).

Biphenyl (Table S4, Entry 10): ¹H NMR(400MHz, DMSO, δ ppm)**:** 7.59-757(d, J=7.64 Hz, 4H), 7.44-7.40(t, J=7.52, 4H), 7.34-7.31(t, J=6.92 Hz, 2H).

4-nitrobiphenyl(Table S4,Entry 13): ¹H NMR (400MHz DMSO, δ ppm): 8.31-8.29(d, 8.83 Hz, 2H),7.97-7.94 (d,J=8.84 Hz, 2H),7.79-78(d, J=7.04 Hz, 2H), 7.56-7.49(m, 3H).

4-methyl,4'-Methoxybiphenyl (Table S4, Entry 14): ¹H NMR(400MHz, DMSO, δ ppm): 7.56-7.54(d, J=8.52 Hz, 2H), 7.49-7.47(d, J=7.88 Hz, 2H), 7.23-7.21(d, J=7.80 Hz, 2H), 7.00-6.98(d, J=8.52 Hz, 2H), 3.77(s, 3H),2.31 (s,3H).

1-(*p***-Methylphenyl)naphthalene (Table S4, Entry 15):** ¹H NMR (400 MHz, DMSO, δ ppm): 8.12-8.09(m, 2H), 7.79-7.70(m, 5H), 7.59-7.54(q, J=7.0 Hz, 2H), 7.41-7.38(t, J=7.16 Hz, 1H), 7.27-7.25(d, 8.60 Hz, 1H).

4-Methyl-3'-methoxybiphenyl (Table S4, Entry 17): ¹H NMR (400MHz, DMSO, δ ppm): 7.56-7.54(d, J=8.16 Hz, 2H), 7.37-7.27(t, J=7.88 Hz, 1H), 7.27-7.25(d, J=7.92 Hz, 2H), 7.21-7.18(m, 1H), 7.15(m, 1H), 6.92-6.89(dd, J=1.68, 2.60 Hz, 1H), 3.81(s, 3H), 2.34(s, 3H).

Reference

- 1. Mino T, Shirae Y, Sakomoto M, Fujita T. Phosphine-free hydrazone-Pd complex as the catalyst precursor for a Suzuki-Miyaura reaction under mild aerobic conditions. J Org Chem. 2005; 70: 2191-2194.
- 2. Littke AF, Fu GC. A convenient and general method for Pd-catalyzed Suzuki cross-couplings of aryl chlorides and arylboronic acids. Angew Chem Int Ed. 1998; 37: 3387-3388.
- Rao ML, Jadhav DN, Banerjee D. A new palladium catalyzed protocol for atom-efficient cross-coupling reactions of triarylbismuths with aryl halides and triflates. Tetrahedron. 2008; 64: 5762-5772.
- 4. Kataoka N, Shelby Q, Stambuli JP, Hartwig JF. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond-forming cross-couplings. J Org Chem. 2002; 67: 5553-5566.
- 5. Rai RK, Gupta K, Behrens S, Li J, Xu Q, Singh SK. Highly active bimetallic nickel-palladium alloy nanoparticle catalyzed Suzuki-Miyaura reactions. ChemCatChem. 2015; 7: 1806-1812.
- 6. Bao GY, Bai J, Li CP. Synergistic effect of the Pd-Ni bimetal/carbon nanofiber composite catalyst in Suzuki coupling reaction. Org Chem Front. 2019; 6: 352-361.
- 7. Simeone JP, Sowa Jr JR. Palladium on carbon as a precatalyst for the Suzuki-Miyuara cross-coupling of aryl chlorides. Tetrahedron. 2007; 63: 12646-12654.
- 8. Bandini M, Pietrangelo A, Sinisi R, Umani-Ronchi A, Wolf MO. New electrochemically generated polymeric Pd complexes as heterogeneous catalysts for Suzuki cross-coupling reactions. Eur J Org Chem. 2009; 2009: 3554-3561.