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Abstract  

Advances in clinical psychiatry have been less than hoped for relative to the achievements in 

neuroscience. However, developments in neuromodulation and psychedelic therapy are 

promising. The efficacy of such treatments and canonical pharmacotherapies benefit from 

genetics and personalized medicine. Moreover, recent studies on the perturbation of 

transcription, including chromatin remodeling, in mental illness emphasized the importance 

of single-cell qPCR as an investigatory method that  bolstered psychiatry. This technique 

demonstrated chromatin remodeling as a biomarker for addiction and the underlying 

mechanism of depression. If personalized medicine, along with canonical and newer 

therapies, can mediate and regulate transcription, epidemics in depression and addiction can 

be mitigated. This motivates investigators to continue to use single-cell transcription 

measures in models of mental illness for translational medicine. 
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1. Introduction 

Mental illness remains a formidable challenge for Western medicine. Despite major advances in 

the neurosciences, rates of depression, anxiety, addiction, and suicide have increased in recent 

decades [1-3]. Though many studies have contributed considerably to psychiatry, therapeutic 

translation has been rare in recent decades [4-6]. However, current developments suggest that 

novel approaches and treatments can bolster psychiatry and contribute to solving the mental health 

crisis. Neuromodulation and psychedelic therapies, combined with advances in neuroimaging, have 

proven to be efficacious as treatments and investigatory tools [7, 8]. Futher, widespread use of 

these therapeutics is possible [9, 10]. Moreover, such novel treatments are guided by a paradigm 

shift in genetics, epigenetics, and personalized medicine.  

Canonical psychiatric pharmacotherapies and newer treatments benefit from the personalized 

medicine paradigm. Choosing patients more likely to respond to one selective serotonin reuptake 

inhibitor (SSRI) vs. another, based on polymorphisms in liver enzymes, can lead to considerable 

progress [11]. Similarly, choosing patients more likely to respond to specific protocols of transcranial 

magnetic stimulation (TMS) vs. cognitive behavioral therapy (CBT) can also lead to significant 

progress [12, 13]. However, genome-wide association studies (GWAS) conducted to search for 

polymorphisms for explaining psychiatric diagnoses have disappointed many as the effect size is 

often small, and positive findings explain the effects in only a small proportion of the patients with 

the disease [14, 15]. This has led investigators of mental illness to focus on transcription and its 

regulation. 

Measuring transcription and its regulation and using the insights gained to impact patient care 

presents unique challenges. For example, non-rhythmic brain regions have  profound transcriptional 

variation associated with the circadian rhythm [16]. Additionally, stochastic patterns of transcription 

require investigators to account for such dynamics [17]. The biological scale at which such 

transcription is measured also influences how such insights can be translated into clinical practice. 

Tissue-level findings group neurons, glia, and endothelial cells among other brain cell types into one 

bundle. Studies at this scale provide an understanding of large trends within a brain nucleus or 

region but may omit critical single-cell findings. A higher resolution provides distinct insights that 

may better explain clinical observations or inform precision treatments. This occurs in chromatin 

remodeling associated with substance addiction and models of depression [18]. Neighboring 

neurons with indistinguishable morphology can vary in cell ploidy and show transcriptional 

heterogeneity [19, 20].  

These factors motivated single-cell transcriptomic studies with a systems biology approach [21, 

22]. Various platforms have been developed in recent years to conduct these studies, and such 

techniques have been effective. However, many of these methods pose statistical and 

reproducibility challenges [23, 24]. Polymerase chain reaction (PCR), conversely, is an older method 

that is very sensitive and specific and can be used to study transcription and its regulation, including 

chromatin remodeling. Though PCR is not as high-throughput as more recent platforms, such as 

microarray and RNA-seq, it remains a reliable tool that is often used to validate the findings of newer 

methods.  
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Microfluidic real-time quantitative PCR (RT-qPCR) platforms such as Biomark™ are capable of 

generating large datasets with high accuracy at relatively lost cost. Moreover, this technique can be 

combined with other techniques to understand the regulation of transcription at the single-cell 

level. Our group combined microfluidic RT-qPCR with laser capture microdissection (LCM) to 

investigate glial-neuronal signaling in alcohol and opioid withdrawal [25-27]. LCM can be used to 

analyze sections of tissue or single cells and has advantages over single-cell selection techniques, 

such as fluorescence-activated cell sorting (FACS), as LCM can localize a single cell and its relation 

to the surrounding cells and their transcriptomes with high anatomic specificity [28]. Additionally, 

qPCR can be used to determine epigenetic regulation of transcription, such as chromatin 

remodeling, which is an emerging pathological source of mental illness [18]. 

Addiction to substances is a growing behavioral disease. Individual suffering, along with 

socioeconomic and politico-cultural costs, motivates scientists and physicians to conceive novel and 

efficacious treatments. Recent studies suggested that the persistent behaviors defining substance 

addiction are associated with chromatin remodeling [18, 29]. GWAS studies have found 

polymorphisms in cholinergic receptor genes, the D2-dopamine receptor, and a protein (ANNK1) 

that predispose individuals to such behaviors [15], but these genetic predispositions do not explain 

most of the addiction epidemic. Epigenetic processes that influence transcriptional regulation, such 

as DNA methylation and histone modification, probably play a much larger role in addiction 

behaviors. Therefore, understanding the mechanisms of chromatin remodeling in addiction might 

benefit many individuals who suffer from this disease [30].  

In a human post-mortem study, Bannon et al. (2014) [31] analyzed gene expression in cocaine-

addicted patients and age-matched controls in single dopamine neurons. Findings from a 

microarray platform were confirmed with qPCR that showed differential expression in ~90 gene 

transcripts, mostly involved in transcription regulation and skewed toward chromatin remodeling. 

They concluded that such changes might constitute biomarkers of cocaine addiction. The midbrain 

region that these dopamine neurons project to, the nucleus accumbens, also demonstrated 

chromatin remodeling. Hyperacetylation and hypomethylation of histone proteins in stimulant 

addiction is the general trend, which increases the transcription rate across the genome [30]. 

However, investigators have also identified specific genes in which deacetylation and 

hypermethylation are consistently observed, suggesting a complex mechanism that might involve 

single-cell precision as well [32]. Recent reviews have discussed such findings in detail [33-35].  

Chromatin remodeling is also central to the pathophysiology of depression [36]. Strikingly, the 

same chromatin remodeling features observed in addiction have been found in animal models of 

depression, suggesting that these same mechanisms  underlie mental illness generally [32]. Rodents 

chronically exposed to stress can develop social defeatism, which is dependent on histone 

acetylation and methylation [37]. Moreover, a potential peripheral biomarker of depression, acetyl-

L-carnitine (LAC), has emerged from this study [38]. LAC is a mitochondrial metabolite that donates 

its acetyl group to multiple proteins and has rapid antidepressant-like effects via histone 

acetyltransferase (HAT) activation [39]. Specifically, LAC acts on P300, which regulates the 

expression of multiple genes, including the metabotropic glutamate receptor-2 (mGlu2)-a protein 

central to synaptic plasticity. LAC also upregulates mGlu2 expression via activation of the 

transcription factor NF-ΚΒ [40]. The study not only demonstrated the complexity of body-mind 

pathology but also suggested a potential treatment, LAC supplementation, to ameliorate the 

underlying mechanisms causing the disease.  
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The role of chromatin remodeling in depression is especially relevant to novel treatments for 

depression such as TMS [41, 42], psychedelics [43], and ketamine [44]. Precision psychiatry, which 

promises the selection of specific brain stimulation protocols or psychedelic-assisted therapies for 

specific patients based on symptoms, biomarkers, genetics, and various other parameters, might 

improve the efficacy of clinical tools used for mental illness by facilitating chromatin remodeling in 

the relevant neuronal populations leading to enduring anti-depressive effects. Moreover, a single 

treatment modality that remodels chromatin might benefit multiple psychiatric conditions. TMS, 

for example, has demonstrated considerable chromatin remodeling properties and is FDA approved 

for treatment-resistant depression, obsessive-compulsive disorder, and nicotine-use disorder [42].  

Substantial improvements in clinical psychiatry have been sparse over the past few decades [4, 

5]. Moreover, a recent increase in the cases of mental illness has motivated investigators and 

clinicians to search for novel and efficacious treatments [1-3]. Innovation in genetic sequencing and 

personalized medicine is promising [12]. Another promising technique is the use of single-cell 

transcriptomics combined with systems biology to understand the pathophysiology underlying 

these diseases [21]. Finally, advances in neuroimaging have facilitated precision psychiatry by 

phenotyping depression with objective markers that can guide individualized treatment regimens 

for that depression ‘biotype’ [7]. Chromatin remodeling plays a central role in the underlying 

neuropsychopathology of the enduring behaviors of common mental illnesses, such as substance 

addiction and depression. Further investigation might yield a better understanding of these 

biological processes, leading to novel applications of new therapies  for treating patients  with these 

diseases.  
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