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Abstract 

The present study introduces Snips2HLA-HsG, an integrated application designed for SNP 

genotype analysis and HLA allele type prediction. Leveraging attribute bagging, a powerful 

ensemble classifier technique from the Bioconductor HIBAG package, Snips2HLA-HsG offers a 

comprehensive response for genetic analysis. Accessible via 

https://snips2hla.shinyapps.io/hla_home/, the application distinguishes itself by prioritizing 

user-friendliness and integrating all-purpose functionalities, including sample preparation, 

model generation, HLA prediction, and accuracy assessment. In contrast to the fragmented 

landscape of existing HLA imputation software, this study addresses the need for an 

integrated, user-centric platform. By streamlining processes and enhancing accessibility, 

Snips2HLA-HsG ensures usability, even for biologists with limited computer proficiency. 

Future updates will address the choice between one or ten classifiers, aiming to optimize 

server utility and meet research needs effectively by adding more classifiers to utilize multiple 

cores for faster calculations. Looking ahead, Snips2HLA-HsG will undergo regular updates and 

maintenance to ensure continued effectiveness and relevance in genetic research. 

Maintenance efforts will focus on resolving issues or bugs and providing ongoing user support. 
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1. Introduction 

In humans, the extended major histocompatibility complex (MHC) region, also known as the 

human leukocyte antigen (HLA), is present in the short arm of chromosome 6p21.3, covering over 

7 Mb and contains many genes. The exact number of genes within the extended MHC region is 

challenging to determine precisely due to ongoing research and the discovery of new genes. 

However, estimates suggest approximately 200 to 300 genes in this region. This region includes 

classical and non-classical genes crucial in immune responses and transplantation [1, 2]. These 

particular genes are recognized as the most complex and diverse in the human genome (among the 

individuals in a population), recently referred to as hyper polymorphic rather than simply 

polymorphic. These genes encode protein products that serve as mediators, facilitating interactions 

with pathogen and cellular peptides. So far, the classical HLA genes, Class I, such as HLA-A, HLA-B, 

HLA-C, and Class II, such as HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-DRB1 

are studied intensively [3, 4]. 

Direct typing of HLA alleles for extensive studies is expensive, and HLA typing through 

computational prediction is inexpensive [5]. HLA imputation is the method of predicting a person's 

HLA genotype using the data about a person’s SNP genotype at locations flanking the classical HLA 

sites. The reason SNPs in the MHC region are informative in predicting the HLA genotype is linkage 

disequilibrium [6]. Not a single variant of SNP can predict the HLA alleles, but using many SNP in the 

surrounding area of HLA loci can produce accurate inferences. Therefore, the SNP data are of 

primary importance in the imputation process. Also, the HLA imputation needs previous knowledge 

regarding which SNP variants are linked with which HLA alleles in previously genotyped samples 

called reference panels. Various factors like the density of SNP data in the HLA area, the size of the 

reference panel, the closeness amongst the reference panel and the samples being imputed, the 

degree of the polymorphism at the locus being imputed, the frequency of the HLA allele as well as 

the computational tool used influence the accuracy of HLA imputation [7]. 

Many methods are available for doing HLA imputation from HLA and SNP genotype data using 

different algorithms [8-15]. This article says that Leslie et al. (2008) [5] developed a methodology 

for predicting HLA alleles from a database of SNP haplotypes carrying known HLA alleles, using an 

identity-by-descent (IBD) model which helped to create LDMhc algorithm. Dilthey et al. (2011) 

subsequently developed an integrated software, HLA*IMP, for imputing classical HLA alleles from 

SNP genotypes based on LDMhc with a modified SNP selection function [8]. BEAGLE, an alternative 

imputation method to the approximate coalescent models, allows prediction multiallelic loci [9]. 

SNP2HLA imputes amino acids and HLA alleles in the MHC region from SNP genotype data [10]. 

Subsequently, the HIBAG method was developed for the researchers with published population-

based models instead of requiring access to extensive training sample datasets. It combines the 

concepts of Attribute Bagging, an ensemble classifier method, and haplotype inference for SNPs and 

HLA types [11]. HLA-check and HLA*IMP performance varies with the reference panel provided [12]. 

The web interface, HLA-IMPUTER, was developed using the bagging algorithm imputation 
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framework [13], where the user can input their SNP genotype data and impute HLA alleles using the 

reference panels. Another method, DEEP*HLA, a multi-task convolution deep learning method, was 

developed to accurately impute genotypes of HLA genes from Single Nucleotide Variation (SNV) 

level data [14]. Likewise, CookHLA is another method that performed well when the reference panel 

was small or ethnically unmatched and was accurate in imputing rare alleles [15]. 

In comparing HIBAG with other related applications, Boegel (2012) emphasizes the suitability of 

HIBAG for HLA typing when SNP data is available, particularly in scenarios such as genome-wide 

association studies (GWAS) where direct HLA typing data is inaccessible [16]. Additionally, HIBAG, 

HLA*IMP, Minimac, and SNP2HLA are discussed by Dilthey et al., 2012 [17] and Sakaue et al., 2023 

[18] as tools employed for HLA imputation from SNP data, each presenting distinctive levels of 

accessibility and functionality. While HIBAG is constrained by limited public accessibility on the web, 

HLA*IMP, Minimac, and SNP2HLA are readily available to researchers. Despite their accessibility 

differences, each tool operates on its own statistical methodology and approach to HLA imputation. 

The choice between HIBAG or HLA*IMP:03 or, Minimac or other tools for HLA imputation depends 

on the nature of available genetic data and the specific objectives of the research or academic study. 

Therefore, in developing the HLA imputation web application, this study opted for HIBAG due to 

its good accuracy, particularly when dealing with complex datasets [7, 19, 20]. Additionally, HIBAG 

incorporates attribute bagging, a technique that enhances accuracy and stability by training each 

classifier on random subsets of the data. By capitalizing on these strengths, the present study 

developed the web application Snips2HLA-HsG. This user-friendly interface allows researchers and 

academics to generate models based on the SNP genotypes sample dataset, predict HLA allele types, 

and evaluate accuracy. Snips2HLA-HsG is now active on the Shiny web server and can be accessed 

via https://snips2hla.shinyapps.io/hla_home/. It offers two functionalities: "Model Generation" and 

"HLA Type Prediction". 

2. Materials and Methods 

The statistical programming language R, Bioconductor package, HIBAG, and its supplementary 

software tools are freely available for the research community, which helps develop user-friendly 

applications for HLA allele prediction. R programming environment (base R) is the core software 

that provides the fundamental components and functionality for executing R code. On the other 

hand, RStudio, an integrated development environment (IDE), offers a user-friendly graphical 

interface by providing a more convenient and feature-rich environment for working with R code. In 

the present study, version 4.3.3 of the R programming environment and the release of version - 

2023.12.1 with build number 402 of RStudio were used from http://www.r-project.org and 

https://www.rstudio.com, respectively. Bioconductor is a collection of packages and tools 

specifically designed to analyze and manipulate biological data in the R programming language. 

These packages cover a wide range of bioinformatics and computational biology tasks. The latest 

version 3.18 was used in the application development. HIBAG has been widely used in HLA 

imputation studies and is available as an R/Bioconductor package. Its latest version (1.38.2) was 

obtained from http://www.bioconductor.org/packages/HIBAG and executed on the Windows 

operating system, but it can also be installed on other operating systems such as Linux and macOS. 

Using the above-mentioned R functionalities and with the appropriate data resources, the present 
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study developed a user-friendly integrated web application for sample preparation, model 

generation, HLA allele typing prediction, and accuracy evaluation, which are discussed as follows. 

2.1 Development of Snips2HLA-HsG Dashboard Application for HLA Allele Type Prediction 

Snips2HLA-HsG is an integrated dashboard web application written in R programming language, 

and RStudio is used as an interface. The R packages on CRAN and Bioconductor, such as rJava, xlsx, 

shiny, tools, HIBAG, Tidyquery, Dplyr, RSQLite, Shinydashboard, shinyCSSLoaders, shiny widgets, DT 

and Shiny are used. 

The Shiny apps have two components: a user-interface (ui) script and a server script. The ui script 

controls the layout and appearance of an application. In ui.R, under the shiny package, the functions 

like column(), Selectinput(), SubmitButton(), DTOutput(), Shinyuioutput(), downloadBttn(), and 

shiny::plotOutput() are used. Under the shinydashboard package, the functions like 

DashboardPage(), Dashboardheader(), Dashboardsidebar(), Sidebarmenu(), Menuitem(), Tabitem(), 

Box() are used. Under DT package, functions like dataTableOutput(), DTOutput() are used. Under 

the shinyCSSLoader package, Withspinner() is used. Under the Shinywidget package, 

updateprogressBar(), get() and progressbar() are used for laying out the user interface. The server 

script contains the computer's instructions to build an application. In server.R, the functions like 

downloadhandler(), updateprogressbar(), renderUI(), renderDataTable(), IncludeHTML() and 

renderPlot() are used for application development. Similarly, in the HIBAG package, the functions 

like hlaBED2Geno(), hlaModelFromObj(), hlaPredict(), hlaAllele(), hlaCompareAllele(), hlaReport() 

and hlaReportPlot() are used. 

Snips2HLA-HsG is a multi-platform application that can be initiated locally from any computer. 

The App has been tested on Chrome, Internet Explorer, Firefox, and Opera browsers. Additionally, 

the Snips2HLA-HsG app has been hosted on the cloud by the shinyapps.io server and is accessible 

at https://snips2hla.shinyapps.io/hla_home/. 

The entire methodology of doing HLA imputation is shown in the workflow (Figure 1). 

https://snips2hla.shinyapps.io/hla_home/
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Figure 1 The workflow of preparing sample, generation of the model, HLA type 

prediction and model validation in the development of an integrated web application 

Snips2HLA-HsG. 

2.2 Data Resources 

HapMap Phase III was completed before the 1000 Genomes project, providing valuable insights 

into human genome variation. The HapMap project, which concluded its data collection and 

updates in 2010 with the release of HapMap Phase III data, has not received further official updates 

since then. Currently, the HapMap project offers genome-wide SNP data in phases I-II with 

approximately 3 million SNP markers in 270 individuals of four populations (YRI, CHB, JPT, and CEU) 

and in phase III with around 1.5 million markers of 150 individuals from the populations, LWK, MKK, 

TSI, GIH, CHD, and ASW. Recent initiatives and resources, such as the 1000 Genomes Project (KG: 

http://www.1000genomes.org/) and Human Genome Diversity Project (HGDP:  

https://www.internationalgenome.org/data-portal/data-collection/hgdp), have provided 

comprehensive catalogs of genetic variation and population data. Researchers now depend on 

these newer resources for up-to-date data in their studies. 

2.3 Nature and the Availability of the Sample SNP Genotype Data 

Using binary files of SNP genotype data with PLINK is recommended because they are more 

efficient than reading large text files. This speeds up data processing, essential for handling 

extensive genetic data [21]. Generally, PLINK data consists of two files: one containing information 

on the individuals and their genotypes (*.ped) and the other containing information on the genetic 

markers (*.map) [21]. In contrast, binary PLINK data consists of three files: a binary file containing 

https://www.internationalgenome.org/data-portal/data-collection/hgdp
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individual identifiers (IDs) and genotypes (*.bed), and two text files containing information on the 

individuals (*.fam) and on the genetic markers (*.bim). 

To create the *.ped file for PLINK using genotype data from different populations, specific 

mandatory columns are required, including (i) Family ID (population name), (ii) Individual ID 

(individual name), (iii) Paternal ID (father's ID or "0" if unknown), (iv) Maternal ID (mother's ID or 

"0" if unknown), (v) Sex (1 = male, 2 = female, 0 = unknown), (vi) Phenotype (0 = unaffected, 1 = 

affected, or 0 = unknown), and (vii) SNP representation (e.g., AA or AG) encoded as ACGT or 1-4 

(where: 1 = A, 2 = C, 3 = G, 4 = T). A tool like IGG3 serves to facilitate the genotype integration 

process, and its primary function is to take SNP genotype data from a given dataset and format it in 

a way that is compatible with popular genotype imputation tools such as PLINK, BEAGLE, and HIBAG 

[9, 22]. This allows researchers to seamlessly incorporate their SNP genotypes into these imputation 

tools for further processing. 

To avoid the need to access these large SNP genotype datasets, databases such as the 1000 Gen

omes Project, HGDP, and HapMap project maintain a few SNP genotype sample files in PLINK form

at. These files can be found at the following URLs: https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes

/2010-05_phaseIII/plink_format/ and https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3/

plink_format/draft_1/. 

To make it even easier, the SNP genotype sample data files are also available on the HIBAG 

website (https://hibag.s3.amazonaws.com/index.html) in the “ImmPuteDataPackage.zip” for the 

research community. The data in this package generally includes SNP markers selected within the 

MHC of chromosome 6, ranging from 25759242 to 33534827, with a missing call rate threshold of 

10%. There are 6241, 17160, and 16896 SNP markers in the CEU, YRI, and CHB + JPT populations 

[23]. 

2.3.1 Integration of PLINK in the Application, Snips2HLA-HsG 

The general procedure for converting the genotype PED file to the binary PED (*.bed) format 

involves using PLINK [11]. It's important to note that this file conversion method requires users to 

memorize specific commands and syntax but is not so efficient for beginners and less technically-

inclined users. To simplify it, the present study has integrated an in-built PLINK command into the 

application for SNP genotype data file conversion. Therefore, one can submit *.ped and *.map files 

to obtain binary PED (*.bed, *.fam, *.bim) files. By default, Shiny limits file uploads to 5 MB per file. 

However, this limit can be modified using the shiny.maxRequestSize option. In the present 

application development, the size limit was increased using the option "shiny " to accommodate 

larger input files as maxRequestSize = 1000 x 10242.  This allows for handling larger input files of 

about 1000 MB in size. 

In the Snips2HLA-HsG application home page, the link “Model Generation” in the side bar menu 

is designed to submit the sample files (*.bed, *.fam, and *.bim) in the corresponding input boxes. 

After submitting the input files, the user-defined reactive function is executed, and the three input 

files are passed as arguments to the HIBAG function ‘hlaBED2geno()’, and retrieves the class of input 

SNP genotype data and stores it as the data frame or R object. Then, it displays data in table format 

using the shiny functions dataTableOutput() and renderDataTable(). 
  

https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-05_phaseIII/plink_format/
https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-05_phaseIII/plink_format/
https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3/plink_format/draft_1/
https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3/plink_format/draft_1/
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2.4 Generation of Population-Specific Models through the Integrated Web Application 

The availability of pre-fit classifiers (published population-based models) for the research 

community can also be used to avoid accessing large training datasets. These can be downloaded 

from the webpage of HIBAG platform-specific parameter estimates  

(http://zhengxwen.github.io/HIBAG/platforms.html). However, it’s important to note that these 

models will not provide accurate results for all the samples. 

Keeping this in mind, the present study developed the application to create a specific model for 

the selected sample SNP genotype data. The available SNP and HLA data from 2693 samples in the 

1000 Genomes dataset (IDAWG_2018.xlsx) include allele genotype details for HLA-A, HLA-B, HLA-C, 

HLA-DQB1, and DRB1 [24, 25]. This data was retrieved using the read_excel() function, and each 

column contains the data for each HLA type, including Region, Population, Sample_ID, Allele 1, and 

Allele 2. These data are saved separately as data frames. The renderDataTable() function displays 

customizable data tables in Shiny applications. It requires a data frame object as input and generates 

the data in a tabular format within the Shiny UI. 

With the availability of these data, the current study has developed a GUI application that allows 

the end-users to create a population-specific model by submitting sample SNP genotype data. The 

current training dataset includes SNP and HLA data from the 1000 Genomes project, and it will be 

regularly updated as new samples are added to the databases [23]. This process also involves 

identifying the surrounding SNPs in the sample SNP genotype data that will be used for training and 

to ensure accurate results, it is crucial to specify the human genome reference as "hg19" along with 

the SNP data. This specification is necessary to precisely locate the specified HLA gene, enabling the 

identification of SNPs within its neighboring region. It's advisable to consider a flanking region of 

500 kb on both sides for this purpose. To simplify this process, one can utilize the hlaAttrBagging() 

function, which provides access to the training algorithm. The setting generates individual classifiers 

to construct an ensemble model using the HIBAG function hlaModelToObj() is possible. In the 

current study, building one or ten classifiers (nclassifier = 1.10) is given as the application is for 

academic purposes. However, for accurate data, it is recommended that end-users generate 100 

individual classifiers to obtain accurate results. Once the model generation is complete, end-users 

can save the model as an R object file (*.RData) for future use. 

2.5 HLA Allele Type Prediction and Accuracy Evaluation 

After the sample and model files are prepared, they are imported in the R session. When the user 

defined R script is executed, it does get input data as R object and models for the given HLA type 

(HLA-A, HLA-B, HLA-C, HLA-DQB1 and HLA-DRBI) as arguments. To predict the HLA type based on 

the generated model, the HIBAG function ‘hlaPredict()’ is used. As a result, this program writes the 

imputation results to a text file, which means the predicted results are displayed in a table using the 

R function ‘write.table()’ to export the resultant data from data frame to a file called ‘result.txt’ 

located on the working directory. The consequent file has the columns such as “sample ID”, “allele 

1”, “allele 2”, “probability,” and “matching.” 

Evaluating HLA-type prediction involves two main approaches, without and with a threshold. The 

former provides a broad evaluation of all imputed HLA types, while the latter focuses on more 

reliable predictions by applying a confidence threshold of 50%. Cross-validation is conducted to 
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assess performance using the "IDAWG_2018" dataset, and confusion matrices are generated to 

analyze sensitivity, specificity, and predictive values for each allele. 

3. Results and Discussion 

In this study, an integrated web application, Snips2HLA-HsG, was developed. This application all

ows for the preparation of SNP genotype sample data, generation of models, and the prediction of

 HLA allele types, along with accuracy evaluation. It is deployed at the URL https://snips2hla.shinya

pps.io/hla_home/, with two available links: “Model Generation” (https://snips2hla.shinyapps.io/hl

a_mod/) and “HLA Type Prediction” (https://snips2hla.shinyapps.io/hla_pred/). The homepage is s

hown in Figure 2 and the results obtained from its links are discussed as follows. 

 

Figure 2 Home page of the integrated web application, Snips2HLA-HsG. 

3.1 Results Obtained through SNP Genotype Samples Preparation 

The conversion of SNP genotype data into the *.ped and *.map file formats is a standard practice 

in population genetics and genetic analysis. These file formats are widely associated with the PLINK 

software package, which is a versatile tool for various genetic analyses, including the prediction of 

HLA allele types. Adopting the *.ped and *.map formats enhances data sharing and collaboration 

among researchers due to the standardized representation of genetic information, which is 

particularly valuable in HLA allele-type prediction research. For the benefit of users, sample data 

from the HapMap project for the Mexican population is provided on the homepage. The data 

includes MEX.ped (476 MB) and MEX.map (33 MB) files. The conversion from the PED (MEX.ped and 

MEX.map) file format to binary PED (MEX.bed, MEX.bim, and MEX.fam) will take a few minutes and 

be stored in the working directory. The SNP genotype data constitutes the primary sample for this 

study. The utilized application, Snips2HLA-HsG, the URL, https://snips2hla.shinyapps.io/hla_mod/ 

incorporates three designated fields to accommodate the input of genotype sample files, namely, 

the *.bed file, *.bim file, and *.fam file. This conversion offers more compact storage, improved 

computational efficiency, and compatibility with PLINK. These advantages contribute to streamlined 

https://snips2hla.shinyapps.io/hla_home/
https://snips2hla.shinyapps.io/hla_home/
https://snips2hla.shinyapps.io/hla_mod/
https://snips2hla.shinyapps.io/hla_mod/
https://snips2hla.shinyapps.io/hla_pred/
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genetic data analysis, enabling researchers to work more efficiently when dealing with large 

datasets. These selectable choices hold a prominent position on the application's main interface, as 

vividly portrayed in Figure 3. 

 

Figure 3 Webpage where the input boxes for the generation of sample and Model. 

As delineated in the methodology section, the approach involves a sequence of transformations. 

Specifically, initially in the *.ped and *.map file formats, the provided SNP genotype data undergoes 

conversion to yield *.bed, *.bim, and *.fam files. The outcome of this conversion materializes in the 

configuration of a numeric matrix format, wherein the BB genotype (signifying the absence of A 

allele) is represented by 0, the AB genotype (indicating the presence of one A allele) is represented 

by 1, and the AA genotype (indicating the presence of two A alleles) is denoted by 2. Instances of 

missing genotypes find representation as NA. Figure 4 visually explains these details, making it easier 

to understand and interpret. 

 

Figure 4 Displays the binary BED in numeric matrix format to represent the genotype. 
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3.2 Results Obtained through Model Generation 

On the application webpage, located at https://snips2hla.shinyapps.io/hla_mod/, users 

encounter three input boxes designed for the upload of sample SNP genotype files in *.bed, *.bim, 

and *.fam formats. Users can select their own files or opt for those stored in the working directory. 

Under the outlined methodology in section 2.4, population-specific models take shape through the 

utilization of reference data for the true HLA allele "IDAWG_2018." Following the importation of 

SNP genotype sample files, users are empowered to specify the HLA gene type (e.g., DQB1) to create 

a gene and population-specific model. 

The runtime for generating models from the sample binary PED files of the Mexican population 

(MEX.bed, MEX.bim, and MEX.fam) will take a couple of minutes and the resultant model file will 

be stored in the working directory as MEX.RData. Since the KG files contain a mixture of populations, 

it takes 15-20 minutes with 10 classifiers. If the number of classifiers increases, so does the 

processing time. This is why the application offers the choice of using either 1 or 10 classifiers. 

The construction of plots showing the distribution of HLA allele frequencies, along with minor 

allele frequencies, is depicted in Figure 5. This visualization aids in understanding genetic patterns 

in population data. The model can be visualized in a scatterplot that shows the relationship between 

the frequency of SNP usage in an individual classifier and the genome coordinates, along with the 

model summary (Figure 6). Generating *.RData models for HLA imputation from binary bed files, 

using "IDAWG_2018" data, is crucial. Genetic Diversity, HLA Loci Complexity, and linkage 

disequilibrium patterns influence imputation accuracy. Population-specific models capture allele 

frequencies, manage loci complexity, and account for unique LD profiles, enhancing accuracy. 

Computational efficiency is vital for large-scale data, addressing admixture patterns. It optimizes 

algorithms and data processing for accuracy, efficiency, and relevance to the population studied. 

 

Figure 5 Plots showing the distribution of HLA allele Frequency long with minor allele. 
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Figure 6 Depiction of the relationship between SNP positions vs. Allele Frequency and 

count of SNP allele genotypes. 

3.3 HLA Type Prediction Results Using the Generated Model and Accuracy Evaluation 

One can use Snips2HLA-HsG at https://snips2hla.shinyapps.io/hla_pred/ to predict HLA allele 

types by uploading SNP genotype files (*.bed, *.bim, *.fam) and their corresponding model files 

(*.RData). Choose the HLA gene type for computational prediction based on population-specific 

models from "IDAWG_2018" data in *.Rdata format, ensuring reliability in the genetics process. 

Prediction results, including probability and matching scores, sample ID, allele 1, and allele 2, are 

displayed in Figure 7. 
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Figure 7 Screenshot showing the result of HLA allele type prediction. 

The runtime for HLA type prediction and accuracy evaluation using the sample binary PED files 

of the Mexican population (MEX.bed, MEX.bim, and MEX.fam) against MEX.RData will take a few 

minutes, and the results will be displayed. The KG files take a few minutes longer. Therefore, the 

processing time depends on the nature of the sample and model files. 

Population-specific models, derived and stored from "IDAWG_2018" data in *.Rdata format, 

align HLA type predictions with the target population's genetic characteristics. These models 

capture allele frequencies, linkage disequilibrium patterns, and genetic diversity, enhancing 

prediction reliability. The "Allele1" and "Allele2" data provide predicted HLA alleles, considering 

population-specific allele frequency distributions. The "Probability" data indicates confidence levels, 

with higher scores indicating more reliable predictions. The “Matching" data assesses how closely 

predicted alleles match known ones from "IDAWG_2018, " contributing to prediction accuracy. 

Calibration and training using actual HLA allele data optimize model parameters for accurate 

predictions. Confusion matrices offer valuable information on sensitivity, specificity, and predictive 

values for each allele, guiding further refinement of prediction algorithms, Following these steps, 

executing prediction analysis for HLA-A, B, -C, -DRB1, and -DQB1, utilizing the Snips2HLA-HsG 

application with a user-friendly interface for input data files. The markdown format exportation of 

findings ensures accessibility for end-users, fostering transparency and trust in HLA-type prediction 

outcomes. 

4. Conclusions 

The primary objective of the present study is to develop an integrated application, Snips2HLA-

HsG, for SNP genotype analysis and HLA allele type prediction, including accuracy evaluation. This 

is achieved by utilizing attribute bagging, an ensemble classifier technique in the Bioconductor 

HIBAG package. The application can be accessed via the URL:  

https://snips2hla.shinyapps.io/hla_home/. While numerous software tools exist for HLA imputation, 

a significant portion of them lacks user-friendliness, integration of all-purpose including sample 

preparation, model generation and HLA prediction, and accuracy evaluation. In contrast, the 
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application developed in this study prioritizes user-friendliness, ensuring accessibility even for 

biologists with limited computer knowledge. 

The application utilizes SNP and HLA allele genotype data from trusted primary biological 

resources like HapMap, 1000 genomes, IMGT/HLA, HGDP, and the Allele Frequency Database. 

Notably, the application simplifies the sample and model preparation process, catering to the end 

users. Furthermore, users can visualize the SNP genotype data patterns in the generated models. 

Another advantage is providing real-time results to users as they input their data, enhancing the 

user experience and eliminating the wait for results in emails. Overall, it is an educational tool for 

students and researchers to understand the preparation of samples and models, as well as HLA 

allele prediction and accuracy checking. 

The application offers one or ten classifiers to accommodate data types and processing times. 

Using fewer classifiers (1 or 10) may limit accuracy. Therefore, the study plans to address this 

limitation in future updates by adding more classifiers to optimize server utility. This enhancement 

aims to utilize multiple cores for faster calculations and to meet research needs effectively. Looking 

ahead, the application, Snips2HLA-HsG, will undergo regular updates and maintenance to ensure its 

continued effectiveness and relevance in genetic research. Maintenance efforts will focus on 

resolving any issues or bugs that may arise and providing ongoing support to users. 
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