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Abstract 

Molecular markers play a crucial role in accelerating crop production for sustainable 

agriculture by identifying resistant traits and enhancing genetic diversity. In this review, we 

examine the impact of the molecular markers on advancing our understanding of stress 

tolerance mechanisms in plants, addressing the pressing imperative to bolster global food 

production to meet the escalating demands of the growing population. Additionally, the 

application of molecular markers to evaluate the genetic accuracy of plants due to genetic 

changes caused by somaclonal variation during in vitro propagation is mentioned. Specifically, 

we highlight emerging technologies like MAS, MARS, MABC, GWAS, GS, DH production, speed 

breeding, and genome editing, which offer promising opportunities to enhance stress 

tolerance and genetic integrity in crop cultivars, aiding in addressing global food security 

challenges. The literature search focused on studies published in the last ten years. We utilized 

a combination of specific and broad keywords such as genetic stability, in vitro propagation, 

molecular markers, abiotic-biotic stress, and plant biotechnology. In conclusion, this review 

http://creativecommons.org/licenses/by/4.0/
mailto:ezgi.sahin@marmara.edu.tr
mailto:ayildiz@marmara.edu.tr
mailto:ahu.uncuoglu@marmara.edu.tr
mailto:ahu.uncuoglu@marmara.edu.tr
http://www.lidsen.com/journals/genetics/genetics-special-issues/molecular-markers-plant-biology


OBM Genetics 2024; 8(3), doi:10.21926/obm.genet.2403260 
 

Page 2/18 

analyzes the use of molecular markers in assessing the stress tolerance and genetic fidelity of 

in vitro grown plants.  

Keywords 

Abiotic-biotic stress; DNA-based markers; genetic stability; plant biotechnology 

 

1. Introduction to Molecular Markers 

Molecular markers linked to different traits can speed up the reproductive process. Having the 

ability to identify molecular markers that are connected to various aspects helps in the acceleration 

of production for sustainable and stable agricultural system-friendly products [1]. Over the years, 

scientists and breeders have used molecular markers to help identify resistant traits, capabilities of 

resisting drought, disease resistance, and high crop production. The accelerated production of stable 

and durable crops is essential in that durable crops can last longer, enabling the stable resistance of 

crops to varying environmental conditions. In plant breeding, molecular markers improve crop 

production, addressing critical global issues, including food shortage and global warming [2]. Genetic 

diversity among individuals and groups of plants, whether natural or human-induced, affects how 

they change and adapt over time. Different plant species and the differences in the species that exist 

within and between can assist in improving plant traits or plant performance. The differences in the 

degree of genetic diversity in a population consist of epigenetic profiles, DNA sequence, protein 

structures, and physiological characteristics. Gene flow, mutations, genetic recombination, and 

genetic drift are the causes of genetic diversity. Population genetics is central to defining plant 

diversity. Genetic diversity is imperative because of its potential to generate crop plants with more 

exceptional characteristics, substantially crucial for ensuring food security. For instance, molecular 

markers differ following genome-based discovery, and genetic and physical maps are created to 

assess genetic diversity. Creating a visual representation of the connections between markers helps 

connect genetic and physical distances. Molecular markers are crucial for measuring and preserving 

genetic diversity and surrogates for adaptation to environmental changes [3].  

In addition, using molecular markers in plant genomics has led to significant advancements in our 

understanding of fundamental biological processes. Scientists utilize these markers to map and 

investigate gene function, uncovering the molecular foundation of plant traits and physiological 

reactions. This knowledge is crucial for deciphering complex characteristics of plants, such as when 

they flower, how they utilize nutrients, and their responses to stress. Studies involving molecular 

markers provide valuable insights that contribute to developing cutting-edge biotechnological 

methods. These methods aim to enhance crop productivity and address emerging challenges in 

agriculture, ultimately benefiting humankind [4]. 

1.1 Types of Molecular Markers 

Numerous molecular markers serve as detection systems for analyzing genetic variations using 

genomic DNA. Hybridization-based markers are based on the ability of a DNA fragment (probe DNA) 

labeled in various ways to hybridize to similar or identical DNA in a DNA sample under investigation. 

This technique is widespread in the analysis of RFLP (restriction fragment length polymorphism). 
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PCR-based markers are constructed using various primers and PCR to detect differences in the 

amplification of polymorphic regions in the DNA molecule. PCR is based on making multiple copies 

of a region whose nucleotide sequence is known using a synthesized pair of oligonucleotides 

(primers). In the PCR-based group, RAPD (random amplified polymorphic DNA), AFLP (amplified 

fragment length polymorphism), SSR (simple sequence repeat), ISSR (inter simple sequence repeat), 

STS (sequence-tagged site), EST-SSR (expressed sequence tags derived simple sequence repeat), 

SRAP (sequence-related amplified polymorphism), TRAP (target region amplified polymorphism), 

CAPS (cleaved amplified polymorphic sequence), SCAR (sequence characterize amplified region. In 

recent years, using SNP (single nucleotide polymorphism), a marker based on DNA array and DNA 

chip technology, has become increasingly common in genome scanning. SNPs are polymorphisms 

caused by point mutations in a base(s) at a genetic locus, creating different alleles. However, chip 

technology has accelerated SNP identification in many samples with the application of chip 

technology [5]. In order to reveal the SNP profile, DNA sequence analysis, SSCP (single-strand 

conformational polymorphism), HA (heteroduplex analysis), ASO (allele-specific oligonucleotide) 

analysis, and hundreds of SNP profiles are investigated simultaneously. Different approaches are 

used, such as the DNA microarray method. Particularly, DNA microarray systems enable the 

simultaneous scanning of hundreds of SNP profiles [6]. DArt (diversity array technology) is a "high 

throughput" genome analysis based on microarray technology and DNA polymorphism technology. 

This technology measures the presence or amount of a unique DNA fragment originating from a 

population or organism's genomic DNA. DArT reveals a solid surface and an open platform for DNA 

polymorphism [7]. DArT has potential applications in germplasm characterization, genetic mapping, 

gene capture, molecular marker-assisted breeding, genome methylation changes tracking, and the 

determination of quantitative trait loci (QTL). The importance of molecular markers stems from their 

ability to read the genetic code, provide information about gene inheritance patterns, and make it 

easier to identify specific characteristics or traits. These markers are essential for breeding, disease 

diagnosis, forensic analysis, and evolutionary studies. All over the world, breeding and genetic 

projects involving various crops successfully employ numerous DNA or molecular markers. Across 

diverse applications, no individual molecular marker demonstrates absolute superiority. The optimal 

choice of a molecular marker depends on several variables, such as the specific context of its 

application, the expected degree of polymorphism, the availability of necessary technical 

infrastructure and expertise, time constraints, and financial factors [8]. The principles of the 

commonly used DNA markers are listed in Table 1.
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Table 1 A comparison of some key features of the primary molecular markers. 

 RFLP  RAPD  AFLP  SSR  ISSR SNP  DArT  

Principle 

DNA is cut with 

specific 

enzymes. The 

resulting 

fragments are 

separated via 

gel 

electrophoresis. 

Short, 

arbitrary 

primers 

amplify 

random DNA 

regions. 

Distinctive 

banding 

patterns are 

produced on 

agarose gels. 

DNA 

fragments are 

selectively 

amplified 

using 

restriction 

digestion and 

ligation. PCR 

amplification 

follows this 

process. 

Short, repeated 

DNA sequences 

(microsatellites) 

are amplified 

using PCR. 

Polymorphisms 

are detected 

based on 

variations in 

repeat numbers. 

PCR amplifies 

regions between 

microsatellite 

sequences. High 

levels of 

polymorphism 

are provided. 

Variations occur 

at single 

nucleotide 

positions in DNA 

sequences. 

SNPs enable 

precise genetic 

mapping and 

association 

studies. 

Genomic DNA is 

hybridized to a 

microarray with 

thousands of 

probes. This 

enables 

simultaneous 

analysis of 

numerous markers 

without prior. 

Level of 

polymorphism 
Low-Medium Medium-High High High High Extremely High High 

Inheritance Co-dominant Dominant Dominant Co-dominant Dominant Co-dominant Dominant 

Cloning and/or 

sequencing 
Yes No No Yes Yes Yes Yes 

Reproducibility High Low Medium High Medium High High 

Type of 

probes/primers 

Low-copy DNA 

or cDNA 

clones 

10 bs random 

nucleotides 

Specific 

sequence 
Specific sequence Motif-based 

Allele-specific 

PCR primer 
Sequenced based 

Required DNA 

(ng) 
10000 20 500-1000 50 50 50-100 25-50 
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1.2 Molecular Markers and Stress Tolerance 

Throughout their growth cycles, plants encounter a range of adverse climatic conditions. These 

include biotic stresses such as herbivore attacks and pathogen infections, as well as abiotic stresses 

like heat, cold, drought, nutrient deficiencies, high salt levels, and the presence of hazardous metals 

and metalloids such as aluminum, cadmium, and arsenic in the soil. Agriculture globally grapples 

with numerous abiotic stressors, including salinity, drought, extreme temperatures, oxidative stress, 

and chemical toxicity, all contributing to environmental degradation and significant declines in crop 

yields. These stresses often elicit morphological, biochemical, physiological, and molecular changes 

that hamper plant growth and productivity. For instance, salinity and drought disrupt cellular 

homeostasis and ion distribution, primarily causing osmotic stress. Meanwhile, high temperatures, 

salinity, or drought trigger oxidative stress, resulting in protein denaturation and cellular damage. 

Consequently, these environmental stresses activate similar cellular signaling pathways and 

responses, which include the production of stress proteins, upregulation of antioxidants, and 

accumulation of compatible solutes [9]. Crops' susceptibility to abiotic stresses significantly impacts 

crop production and productivity, with vulnerability varying among species and stress types [10]. 

Abiotic factors, including heat (20%), drought (9%), cold (7%), and other stressors, account for 

approximately 50% of crop losses [11], posing severe threats to food security and influencing the 

natural distribution of plants. Plant cells regulate the dynamic process of stress adaptation at 

physiological, cellular, and molecular levels. To address concerns over declining agricultural 

productivity, food insecurity, and malnutrition, particularly exacerbated by climate change, 

agricultural scientists have prioritized understanding stress tolerance and adaptation mechanisms in 

crops. Plant stress adaptation is a continuously evolving process, regulated across various levels, 

from physiological to molecular, within plant cells [12]. Highlighting the urgency of the matter, the 

World Summit on Food Security has emphasized the need to increase food production by at least 

70% by 2050 to accommodate the expanding global population [13]. Integrating molecular markers 

has significantly advanced the understanding and enhancement of plant stress tolerance. Molecular 

markers, such as DNA sequences or genetic variations, provide valuable insights into the genetic 

basis of stress tolerance traits. By identifying specific genes or genomic regions associated with 

stress tolerance, researchers can develop molecular tools for MAS in breeding programs. MAS 

enables the rapid and precise selection of stress-tolerant genotypes, developing resilient crop 

varieties [2]. Several studies have showcased the efficacy of molecular markers in augmenting 

abiotic stress tolerance in various crops. Table 2 presents studies on molecular markers and abiotic 

stress tolerance in various crops. 
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Table 2 Studies on abiotic stress tolerance using molecular markers. 

Crop Abiotic Stress Marker Type References 

Bean Drought DaRT [14] 

Rice Salinity KASP [15] 

Barley Salinity ISSR [16] 

Cotton Salinity QTL [17] 

Wheat Heat miRNA-based SSR [18] 

Wheat Drought Indel/CAPS [19] 

Wheat Cold KASP [20] 

Soybean Flooding SNPs [21] 

Safflower Drought AFLP [22] 

Tomato Heat QTL [23] 

Sesame Drought SNPs [24] 

Petunia Salinity RAPD [25] 

Perennial grass (Miscanthus) Drought SSR [26] 

Tomato Heat RAPD, SCAR [27] 

Cassava Drought EST–SSR [28] 

Chickpea Cold, Drought AFLP [29] 

Tomato Salinity SSR [30] 

Safflower Drought SSR, ISSR  [31] 

Utilizing molecular markers is a cornerstone in unraveling the intricate mechanisms governing 

biotic stress resilience in plants. These markers, which include different genetic elements like DNA 

sequences and genetic variations, give us a lot of information about the genetic basis of traits that 

protect plants from pests, diseases, and other living things that can be harmful. Numerous 

investigations have highlighted the effectiveness of molecular markers in enhancing biotic stress 

tolerance across different crops [32]. Table 3 provides a compilation of studies on molecular markers 

and biotic stress tolerance in various crops. 
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Table 3 Studies on biotic stress tolerance using molecular markers. 

Crop Biotic Stress Marker Type References 

Wheat Leaf rust KASP [33] 

Wheat Fusarium head blight KASP [34] 

Wheat Stripe rust KASP [35] 

Wheat Stem rust KASP/STARP [36] 

Potatoes Late blight SSR [37]  

Potato Late blight DArT [38] 

Chickpea Fusarium wilt SSR [39] 

Pea Fusarium root rot SSR/SNP [40] 

Wheat Powdery mildew STARP [41] 

Melon Powdery mildew CAPS [42] 

Chickpea Ascochyta blight  AFLP [29] 

Rice Brown planthopper SNP [43] 

Pea Fusarium wilt CAPS/SSR [44] 

Pea Powdery mildew SSR, SNP [45] 

2. Genetic Fidelity of In Vitro Derived Plants 

Plant tissue culture, a biotechnological technique, has proven to be extremely beneficial in both 

plant breeding and the mass production of plants. By harnessing the ability of plant cells to 

differentiate into any cell, in vitro propagation is a crucial technique in plant biotechnology. 

Replicating plants in vivo can present difficulties, incur high costs, and may not consistently provide 

desired outcomes. Tissue culture technologies provide an alternative method for asexual plant 

propagation. Tissue culture, known as micropropagation, effectively achieves clonal propagation 

within a limited time and physical space [46]. Vegetative propagation aims to produce progeny 

plants that exhibit genetic similarity to a solitary parent plant. Cloning is a biological process that 

creates a group of plants known as a clone. The importance of clones in horticulture and other 

agricultural fields cannot be overstated. The potential of in vitro culture-based micropropagation 

has increased significance in producing economically important plants with medicinal, horticultural, 

agricultural, and pharmaceutical value [47]. In vitro, culture-based methods also propagate and 

conserve some plant species classified as vulnerable, threatened, and endangered. There is a 

controlled environment for in vitro propagation that helps plantlets grow and develop quickly and 

effectively, which is faster and easier than what happens in nature or living things [48]. Tissue culture 

serves as an alternate means of efficiently multiplying plants in vitro, in addition to its role in in vitro 

propagation and conservation. This approach can be employed to produce phytochemicals of 

medical importance, bioactive phytochemicals that are therapeutically beneficial, and secondary 

metabolites with antioxidant activity [49, 50]. Given the growing demands in the horticulture and 

herbal pharmaceutical sectors, it's crucial to scrutinize the advancements in biotechnological 

methods to ensure a consistent supply of high-quality and efficient components. Plant tissue culture 

is an invaluable technique for rapidly propagating economically important plants. Optimization 

studies carried out in plant tissue culture applications aim to get a high plant yield. When conducting 

studies on plant growth in a controlled setting, the main objective is to maximize the efficiency of 
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plant regeneration for large-scale production. Equally important is the need to maintain the genetic 

integrity and uniformity of the plants regenerated in vitro, ensuring that they possess the same 

genetic traits as the original donor plants [51]. Studies have shown that tissue culture conditions can 

cause plant stress, resulting in changes in the genetic stability of the cloned genotype and the 

appearance of genetic variations in regenerated plants [52]. Somaclonal variations can occur at any 

stage of the plantlet's development, especially during the multiplication phase, when conducting 

tissue culture for the mass production of commercially important plants. The observed variations 

are caused by stress induced by atypical in vitro conditions, frequent sub-culturing, the specific 

explant used, the type of culture medium employed, and the use of plant growth regulators in high 

concentrations combined with multiple subcultures. When cells are under a lot of stress, genetic or 

epigenetic changes occur during the stages of in vitro cultivation, such as callus formation and 

somatic embryogenesis in plants [52-54]. Plants derived from axillary branching typically do not 

exhibit variations, whereas cultures that undergo a callus phase are believed to promote a higher 

rate of mutation [52]. These factors lead to heritable DNA damage, impeding the precise clonal 

character of the offspring. Somaclonal variation, a new word for changes in both genes and 

epigenetics, is seen during in vitro propagation and can affect phenotypes [55]. In order to clone and 

preserve superior genotypes, it is necessary to ensure a high level of genetic homogeneity among 

the regenerated plants. Ensuring the genetic homogeneity of in vitro-produced plants early is 

extremely important. Hence, it is crucial to verify the genetic consistency of the propagated plants 

with respect to the parent plants in order to validate their suitability for specific purposes [56]. 

Although regenerated plantlets may display comparable physical traits to the donor plants, this does 

not necessarily imply their genetic resemblance to the mother plants [57]. Several methods are used 

to check the genetic stability of plantlets grown in a lab. These include changes in their shape, 

cytogenetic analysis to find changes in the number and structure of chromosomes, and biochemical 

and molecular DNA markers [58, 59]. Maintaining a high degree of genetic homogeneity among the 

regenerated plants is crucial to ensure the exact reproduction and retention of the best genotypes 

selected for their exceptional characteristics [60]. Researchers have employed several strategies to 

assess genetic stability, relying on morphophysiological, biochemical, and cytological methods. 

Generally, these methods concentrate on traits susceptible to in vitro treatment, environmental 

conditions, and the type of explants utilized. DNA-based molecular markers effectively control the 

genetic stability and confirm genotypes that exhibit what was expected under in vitro growth 

conditions [61]. Molecular markers are more accurate and reliable than phenotypical, biochemical, 

and physiological markers in genetic fidelity studies [62]. Identifying these changes early on with 

molecular tools makes it possible to enhance the micropropagation process and eliminate 

genetically unstable plants. Molecular markers are employed to confirm the regenerated plantlets' 

genetic integrity and the devised process's dependability. When assessing the genetic accuracy of 

micropropagated plants, it is preferable to employ multiple molecular markers that target distinct 

regions of the genome rather than relying on a single marker [61]. Different DNA markers that can 

be used to check the genetic fidelity of plants are listed in Table 4. 
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Table 4 Studies on genetic fidelity conformity using molecular markers. 

Plant Species Genetic Fidelity Conformity References 

Camelina sativa L. RAPD [63] 

Hedychium coronarium L. RAPD, ISSR [64] 

Rubus fruticosus L. SRAP [65] 

Menthol piperita L. ISSR [66] 

Musa spp. L. SSR [67] 

Chlorophytum comosum L. RAPD [68] 

Dendrobium transparens L. RAPD, ISSR [69] 

Hedychium longicornutum L. RAPD [70] 

Liquidambar orientalis L. ISSR [71] 

Hancornia speciosa L. SSR, ISSR [72] 

Dendrobium crepidatum L. RAPD [73] 

Artocarpus heterophyllus L. RAPD [74] 

Oryza sativa L. SSR [75] 

Andrographis alata L. RAPD, ISSR [76] 

Dioscorea deltoidei L. ISSR [77] 

Prunus salicina L. RAPD, ISSR [78] 

Dendrobium fimbriatum L. RAPD, ISSR [79] 

Annona reticulata L.: ISSR [80] 

Rheum rhabarbarum L. SRAP [81] 

Rubus fruticosus L. RAPD, SRAP [82] 

Artemisia vulgaris L. ISSR [83] 

Pavetta indica L. RAPD, ISSR [84] 

Andrographis echioides L. ISSR [85] 

3. Emerging Technologies and Future Prospects 

In 2020, the global population of individuals experiencing hunger surpassed 800 million, a 

number expected to rise alongside the expansion of the world's populace. This trend exacerbates 

the effects of climate change and raises concerns about heightened conflict. Dependence on 

outdated breeding techniques, which typically require 7–10 years to develop high-yielding, stable 

crop varieties, is deemed unsustainable. However, integrating traditional breeding methods with 

state-of-the-art molecular marker technologies presents promising avenues to tackle these issues. 

Various molecular marker applications, including MAS (marker-assisted selection), MARS (marker-

assisted recurrent selection), MABC (marker-assisted backcrossing), GWAS (genome-wide 

association studies), GS (genomic selection), DH (doubled haploid) production, speed breeding, and 

genome editing, are transforming the field of plant breeding. These technologies facilitate the rapid 

identification and selection of superior genotypes with enhanced stress tolerance and genetic 

fidelity.  

In MARS, the F2 population is improved using phenotypic data and marker scores in the first 

marker-based selection cycle. Subsequently, three further marker-based selection cycles are 

conducted, only relying on marker scores. In biparental populations, QTL mapping involves the 
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contribution of beneficial alleles from both parents [86]. MARS is frequently preferred for enhancing 

intricate characteristics such as resistance to abiotic and biotic factors and increasing the production 

of grains by selectively breeding native genes in a progressive way [87, 88]. Recent breakthroughs in 

scientific exploration, especially within genetics, genomics, and crop physiology, have unveiled novel 

avenues for mitigating the effects of various stresses, a feat previously deemed challenging, if not 

unattainable, just a few decades ago.  

MABC is one of the best methods because it uses molecular markers to find and choose the genes 

that protect plants from these stressors. MABC streamlines the transfer of stress-tolerant traits from 

donor parents to elite genotypes [89]. The study used MABC to improve the GS-23 sorghum variety's 

stay-green traits by combining stg3A and stg3B QTLs. SNP and SSR markers facilitated accurate 

hybrid identification, enhancing sorghum breeding precision. Field tests showed that the stay-green 

QTLs were successfully introduced, proving that breeding has progressed [90]. Various crops such as 

chickpeas [91], corn [92], and rice [93] have demonstrated MABC.  

Researchers utilize GWAS to uncover correlations between genetic variations and specific traits. 

GWAS provides valuable insights into the genetic underpinnings of stress tolerance, empowering 

breeders to pinpoint genomic regions linked to desirable traits [94]. Using an MLM (mixed linear 

model) to examine the first MAGIC indica rice population subset, researchers identified significant 

markers within a specific chromosomal region, notably in proximity to previously reported QTLs 

associated with salt sensitivity and the Saltol QTL [95]. This study found a lot of new candidate genes, 

mainly transcription factors linked to salt-related traits. These findings will help scientists improve 

rice in the future [96]. Additionally, a separate GWAS investigation focused on potassium transport-

related genes in potatoes under salinity stress [97]. Sahito et al. [98] highlighted the pivotal role of 

GWAS in identifying genomic loci and allelic variants governing resistance to diseases and pests, 

stress response, and signal transduction genes in maize.  

CRISPR-Cas9 technology and other genome editing methods are promising for making crop plants 

resistant to different stresses by simultaneously targeting multiple stress-sensitive genes in a high-

performing cultivar [99]. Hossain et al. [100] provided an updated overview of CRISPR-Cas genome 

editing technology's concept, application, and mechanism for improving crop plants' resilience to 

abiotic stress. Nascimento et al. [101] examined the utilization of CRISPR/Cas as a supplementary 

tool in crop breeding programs aimed at developing modified cultivars resilient to various abiotic 

stressors. GS is suggested as a substitute for MAS. It involves using DNA markers covering the 

complete genome to monitor complicated characteristics such as yield. This method enables the 

quick identification of a wide range of parents, resulting in higher breeding value in future 

generations and thereby accelerating genetic progress within a very short period. However, 

obstacles such as the process of determining the order of DNA sequences, the methods used for 

determining an organism's genetic makeup, and the ability to achieve desired results at a reasonable 

cost still pose substantial challenges to the widespread use of genomic selection for speeding the 

process of plant breeding [102].  

GS made choosing the best plants much faster and more efficient than the traditional method for 

most plants in Arabidopsis, maize, and barley [103]. In their study, Shikha et al. [104] discovered 

several SNPs consistently present in different locations and characteristics. This finding is significant 

because it provides essential information for selecting better genotypes and candidate genes for 

breeding drought-tolerant maize hybrids. Rutkoski et al. [105] performed tests to evaluate the 

efficacy of several GS models in predicting the impact of drought and heat stress on wheat.  
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Introducing multiple traits through traditional breeding methods is time-consuming and requires 

several generations of backcross breeding. Therefore, DH technology has become a valuable 

complement to conventional breeding practices. This approach enables the generation of fully 

homozygous lines in a single generation from heterozygous parents, whereas traditional breeding 

methods require multiple generations of selfing to achieve near homozygosity [106]. The DH method 

is a promising way to solve the problems that come with hybrid rice because it makes high-yielding 

doubled haploids with stable grain quality [107, 108].  

Breeders can quickly evaluate how well a plant responds to stress and identify the best genetic 

traits using speed breeding methods. Speed breeding is a technique that uses artificial conditions to 

improve plant growth and accelerate the breeding process. The method allows for the rapid and 

consistent creation of genetically identical offspring, accelerating the development and release of 

new plant varieties [109]. Although speed breeding methods can be expensive and demand specific 

expertise and resources, they can potentially speed up traditional breeding programs greatly and 

result in stable and identical genetic traits in a shorter period [110]. What distinguishes speed 

breeding is its versatility across various germplasms, eliminating the requirement for in vitro 

culturing tools or the need to traverse different regions to find suitable climates, as is necessary for 

double haploid and shuttle breeding approaches [111]. Speed breeding has demonstrated 

effectiveness in many crops, such as wheat [112], rice [113], peas [114], and chickpeas [115]. Using 

molecular markers in plant breeding has a vast potential to speed up the creation of better 

genotypes that can handle stress better and stay true to their genes. These emerging technologies 

pave the way for the sustainable production of resilient crop varieties, which are vital for addressing 

global food security challenges amidst climate change and population growth. 

4. Conclusion 

This review underscores the critical factor of genetic fidelity in plant breeding, especially tissue 

culture-based micropropagation technologies. The need to produce original plants to maintain the 

genetic uniformity of regenerated plants to conserve superior genotypes is defined. Somaclonal 

variation generated via tissue culture processes and its genetic stability evaluation challenges are 

detailed. In addition, the review considers novel molecular marker technologies and innovative 

breeding strategies, including marker-assisted selection, genome editing, and speed breeding, which 

present new, exciting opportunities for boosting stress tolerance and improving genetic integrity in 

various crop cultivars. They can be applied with other genomic tools to accelerate the process of 

creating robust cultivars generally used to counteract food security issues around the globe in light 

of climate changes and increasing populations. 
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