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Abstract 

Waste-to-Energy technologies have the potential to dramatically improve both the natural 

and human environment. One type of waste-to-energy technology that has been successful is 

gasification. There are numerous types of gasification processes and in order to drive 

understanding and the optimization of these systems, traditional approaches like 

computational fluid dynamics software have been utilized to model these systems. The 

modern advent of machine learning models has allowed for accurate and computationally 

efficient predictions for gasification systems that are informed by numerous experimental and 

numerical solutions. Two types of machine learning models that have been widely used to 

solve for quantitative variables that are of predictive interest in gasification systems are 

gradient boosted machines and artificial neural networks. In this article, the reviewed 

literature used either gradient boosted machines or artificial neural networks to successfully 

model gasification systems. The review of such literature allows for a comparison in machine 
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learning model architecture and resultant accuracy as well as an insight into what parameters 

are being used to inform the models and to make predictions. 
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Machine learning models; gasification; artificial neural networks; gradient boosted machines 

 

1. Introduction 

Waste-to-Energy (WtE) technologies are of growing interest since they offer a multivariate 

solution to the sustainability dilemma: minimizing waste streams and returning both energy and 

materials. WtE technologies are typically categorized into thermal, biochemical, or mechanical 

processes. Previously, thermal technologies posed a number of adverse effects to the environment 

and human health, as poor-quality combustion can lead to the emission of undesirable pollutants 

such as NOx, SOx, dioxins, and furans. Fortunately, current advancements in combustion and air 

pollution control technologies have allowed thermal WtE technologies to achieve efficient energy 

and material recovery while minimizing adverse effects on the environment and human health [1].  

Gasification is one of the most common alternatives to combustion as a means of proper thermal 

treatment of municipal solid waste (MSW) [2-5]. Gasification uses a thermal process coupled with a 

reduced oxygen environment of a reactor to convert the large molecules within MSW into small 

molecules [6-8]. Gasification is typically aided by the initial treatment of a high temperature 

combustion process of the MSW called pyrolysis. Through pyrolysis, a combustible gas known as a 

syngas is partially formed and primarily consists of H2, CH4, CO2, and CO. Once finally treated in the 

gasification stage, the syngas can be used to generate energy. The different types of pyrolysis used 

with gasification are flash, fast, and slow [9]. Additionally, the reactors themselves have different 

configurations: fixed-bed, fluidized-bed, rotary kiln, ablative, and screw. Modern gasification 

systems have the ability to reduce the original MSW stream volume by 80-95% and achieve an 

exergy efficiency of up to 46.7% [10, 11]. 

Due to the complex nature of gasification systems, many different approaches have been taken 

to model these systems. Recently, traditional approaches like computational fluid dynamics (CFD) 

modeling and small-scale experiments have allowed for machine learning (ML) models to utilize 

data obtained by the previous research methods. This data then can build an accurate and easy-to-

use model of gasification systems. ML models can make sense of the non-linear data attributed to 

the gasification process due to the wide range of varying system parameters such as temperature, 

MSW stream, pressure, heating rates, and reactor residence. By combining the available datasets 

of the parameters surrounding different gasification systems, ML models allow researchers to gain 

an accurate understanding of the nuanced system. ML models are becoming more popular within 

research surrounding gasification and WtE technologies, as they are much more cost-effective than 

experimental iterations. They also can achieve a higher accuracy than traditional CFD models. 

ML models are used to solve for classification or regression prediction problems. Classification 

ML models create a mapping function by using input variables and discrete output variables. The 

output variables of classification ML models belong to a label or category, and thus, the mapping 

function is used to predict whether the outcome will be a label or category. Regression ML models 
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create a mapping function by using input variables and continuous output variables. The output 

variables of regression ML models are normally a real-value quantity; therefore, the mapping 

function is used to predict what the real-value quantity of the outcome is. ML regression models 

are useful for application with gasification systems because they are able to predict real-value 

system performance quantities such as syngas composition, remaining mass, lower heating value 

(LHV), and total syngas yield [11-15]. Two ML regression models that are commonly used with 

gasification systems are artificial neural networks (ANNs) and gradient boosted machines (GBMs). 

These machine learning methods were selected as they adapt well to complicated inputs/outputs 

as are commonly found with gasification technology and there was substantial literature available 

for consideration.  

The purpose of this paper is to conduct a discussion of ANN and GBM ML models that are used 

with gasification systems. This discussion will first provide insight as to what gasification is and the 

key parameters that are used to describe the system, the literature that links ML models to 

gasification, and how the ANN and GBM models work. It will then analyze what statistical methods 

are used to evaluate the models and successful synthesis of gasification with ANN and GBM models 

that have been found in the literature. 

2. Materials and Methods 

This discussion focuses on gasification systems that are used for WtE processes and ML models, 

specifically ANNs and GBMs for regression, that are applied to these systems. This review contains 

87 peer-reviewed journal articles. Searches for reviewed journal articles were conducted on 

databases such as ScienceDirect, IEEE Explore, Google Scholar, and SCOPUS. Search terms that were 

used to find reviewed journal articles consisted of the following key words: “Machine Learning”, 

“Gasification”, “Regression Analysis”, “Neural Networks”, “Gradient Boosted Machines”. 

3. Results and Discussion 

3.1 The Gasification Process  

Gasification is a thermal process in which a waste feedstock is decomposed into a syngas that 

can be used as a source of energy. The reaction that describes the conversion process of waste 

feedstock into the valuable syngas and other constituents is shown in Equation 1. The product 

syngas contains non-condensable gases such as H2, CO, CO2, H2O, N2, and some lighter hydrocarbons 

[16]. 

𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 + ℎ𝑒𝑎𝑡 → 𝑠𝑦𝑛𝑔𝑎𝑠 + 𝑡𝑎𝑟 + 𝑐ℎ𝑎𝑟 + 𝑠𝑜𝑜𝑡 (1) 

An elevated temperature must be applied in order to assist in the conversion from the input 

waste feedstock to a syngas. The typical temperature range in which gasification takes place is 

between 900-1500°C [17]. Some of the notable byproducts from the gasification process found in 

Equation 1 are tar and char. Tar consists of larger hydrocarbons that are a product of the gasification 

process and develop into a viscous substance [18]. Char consists of solids that are entrained within 

the product syngas and are composed of solid carbon and inorganic ash [19]. Char and tar 

byproducts should be minimized as they can lead to erosion, corrosion, and plugging of the 

gasification systems that can necessitate maintenance and decrease process efficiency [20]. 
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Multiple process stages are employed to the gasification process in order to minimize the overall 

impact that char and tar have on the operational condition of the system. By using multiple stages, 

the waste feedstock can first be treated at a lower temperature (pyrolysis) allowing for initial char 

removal by the first reactor and cyclone before it enters the gasification reactor [21]. An example 

of a multi-stage gasification process and the separation of pyrolysis from gasification is illustrated 

in Figure 1. It is important to note that the tar is broken down to non-condensable gases in the final 

gasification step with the aid of oxygen [16]. Tar will be reduced to lighter hydrocarbons, hydrogen, 

and carbon monoxide in the final step process so that the heating value of tar will be retained within 

the product syngas [16].  

 

Figure 1 Schematic representation of a multi-stage gasification process. 

The gasifier component of the multi-stage system can be classified by the parameters that 

describe the reactor. Fixed bed and fluidized bed reactors are two types of classifications based on 

the hydrodynamics of the gasification reactors. A fixed bed reactor holds the waste feedstock in 

relative place during the combustion process within the surrounding walls of the reactor [22]. A 

fluidized bed reactor allows the waste feedstock to move freely during the combustion process 

within the surrounding walls of the reactor [22]. Gasification reactors can be classified further based 

on the direction of flow within the reactor. In downdraft gasifiers, both the waste feedstock and any 

oxidating agent moves downward. However, in updraft gasifiers, the waste feedstock moves 

downward while the oxidating agents move upward [23]. Various types of commercial gasification 

reactors, their histories and classification based on chemical kinetics and hydrodynamics are found 

in the literature [24]. They have been used in diverse industries, such as fertilizer production, 

refineries, coal gasification, WTE, power generation, etc. 

3.2 Important Gasification Process Terminology 

It is important to know the terminology used to describe different parameters within the 

gasification process in order to understand how ML predictive models can be applied to these 

processes. This important terminology describes the inputs and outputs of the gasification system. 

Predicting the outputs of a gasification system from the inputs allows for the development of better 
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and more efficient systems. Table 1 defines the important terminology relevant to gasification 

systems. 

Table 1 Important terminology describing the gasification process. 

Term Abbreviation Description 

Moisture Content MC The moisture content of the input waste feedstock 

(fuel) [25]. 

Lower Heating Value LHV The net heat of combustion [26]. Specifically relating 

to the created syngas. 

Lower Heating Value of 

Products 

LHVp The sum of the LHV of the syngas and the calorific 

value of entrained char and tar [11]. 

Reduction Zone 

Temperature 

RZT Portion of the gasifier directly above the combustion 

zone. This zone occurs once all the oxygen and 

gasifying media from the reaction is gone [27, 28]. In 

this zone the CO2 and water vapor entrained by the 

gas flow have been reduced to CO and H2 [27-29].  

Equivalence Ratio ER The ratio of actual air fuel to the stoichiometric air 

fuel [30]. 

Injected Steam Ratio ISR The ratio of steam to dry feedstock [13]. 

Steam Flow Rate SFR Rate of steam flow input in (kg/h) [14]. 

Space Velocity SV The ratio of entering volumetric flow rate and the 

reactor volume [15].  

Particle Size None Size of the entering waste feedstock [15].  

Syngas Yield  GY Yield of the syngas output [11].  

Atmosphere Type ATM Level of CO2 and N2 within the reactor adjusted by 

experimental control [31].  

Heating Rate HR The heating conditions within the reactor adjusted 

by experimental control [32].  

Ash Content A Proximate analysis and resultant ash content of 

waste feedstock [33].  

Gasifier Bottom 

Temperature 

GBT Temperature at the bottom of the gasification 

reactor [14].  

Volatile Compounds VC Proximate analysis and resultant volatile compound 

content of waste feedstock [33].  

Fixed Carbon FC Proximate analysis and resultant fixed carbon 

content of waste feedstock [33]. 

3.3 Machine Learning and Gasification Literature  

Elsevier’s abstract and citation database, Scopus, was used to scrub for articles using the Boolean 

search phrase: “Machine Learning” AND “Gasification”. This Boolean search phrase returned 39 

documents that contained both of the search terms within either their title, abstract, and keywords 

[34-72]. CitespaceV software used the data collected from the title, abstract, keywords, and 

references for each document. The software was able to visually model the interconnectedness of 
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matching key terms between the documents from the Scopus research database that used the 

Boolean search phrase. This visualization is shown in Figure 2. The visualization in Figure 2 utilized 

six different clusters to connect key terms that matched from the title, abstract, and keywords 

between the documents. The strength between the matching key terms is visualized by the 

thickness of each line that connects the individual document nodes. Matching key terms that 

appeared more frequently are visualized by a larger text font. Figure 2 exhibits that some of the 

stronger key terms were: “machine learning”, “underground coal gasification”, “artificial 

intelligence”, “neural network”, “regression analysis”, and “artificial neural network”. Furthermore, 

the color of the line between each node document indicates the year in which the document was 

published. The recency of the connection between ML models and gasification is demonstrated by 

the oldest document connecting these search terms being published in 2013. In fact, all the 

documents found in Scopus only have a nine-year timespan between the document with the earliest 

publication date and the latest. 

 

Figure 2 CitespaceV visualization network of matching key terms between Scopus 

documents. 

3.4 ANN Models with Gasification 

ANN models utilize available data in order to learn a process similar to the human brain. The 

advantage of ANN models over other types of theoretical and empirical models is that ANN models 

are universal approximators and therefore allow for close prediction accuracy in a variety of 

situations [11]. ANN models have been applied across a wide variety of fields including: weather 

prediction, signal processing, pattern recognition, function approximation, and process simulation 

[11]. Like many predictive models, the dataset that an ANN model utilizes to create its prediction is 



JEPT 2022; 4(3), doi:10.21926/jept.2203027 
 

Page 7/23 

typically a limiting factor of how accurate the ANN model predictions can get. Since the ANN model 

creates a unique predictive model based off the dataset it is fed, the more data that an ANN model 

can receive on the situation, then the more likely it will be representative of the non-linearities and 

“randomness” that exist within the dataset. 

Two types of ANN architectures used for gasification modeling are a multilayer feed-forward 

neural network with multiple input and multiple output (MIMO) variables and multiple input and 

single output (MISO) model. Figure 3 shows a MIMO model with both dual and single layers. Both 

models shown in Figure 3 contain an input layer, a hidden layer or layers, and an output layer. When 

ANNs contain more than one hidden layer they are referred to as deep neural networks (DNNs) [73]. 

Beyond this basic description of neural networks in Figure 3, details about various neural network 

architectures can be found in previous studies [74]. Optimization of neural networks using genetic 

algorithms and particle swarm techniques were also presented [41, 75].  

 

Figure 3 Schematic diagram of a MIMO ANN model (A) one hidden layer (B) two hidden 

layers. 

The inputs and outputs of each layer are shown using typical parameters found in the literature 

used when modeling gasification. A range of all inputs used with gasification ANN models are shown 

in the “Input Parameters” column of Table 2 along with a range of all output parameters shown by 

the “Predictive Parameters” column. Table 2 also indicates the type of ANN model used in the “ANN 

model” column, the type of gasification process being modeled in the “System Description” column, 

and the number of layers in the ANN model in the “Number of Layers” column [41, 75]. 

Table 2 ANN models used with gasification. 

Reactor Design Model Details Test Accuracy Source 

Plastic and 

rubber wastes 

Multi-Layer Perceptron, 1-2 layers, 

1 to 20 neurons 

 

Hidden Layer Function: standard 

and ordinary activation functions 

 

R2 = 0.437 to 0.988 

 

Test/Val/Train%: 

15/15/70 

w/cross validation 

 

Dataset Size: 30 

 

Ayodele et 

al, 2021 

[38] 
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Inputs: Temperature, Rubber seed 

shell particle size, HDPE particle 

size, Plastic % 

 

Outputs: Hydrogen Production 

(vol. %) 

Epochs: 12 

Plastic and 

rubber wastes 

Radial Basic Function, 1-2 layers, 1 

to 20 neurons 

 

Hidden Layer Function: standard 

and ordinary activation functions 

 

Inputs: Temperature, Rubber seed 

shell particle size, HDPE particle 

size, Plastic % 

 

Outputs: Hydrogen Production 

(vol. %) 

R2 = 0.001 to 0.987 

 

Test/Val/Train%: 

15/15/70 

w/cross validation 

 

Dataset Size: 30 

 

Epochs: 12 

Ayodele et 

al, 2021 

[38] 

Biomass in fixed 

bed downdraft 

gasifiers 

MISO, 1 layer, 3-5 neurons 

 

Hidden Layer Function: tansig 

 

Inputs: Carbon, Hydrogen, Oxygen, 

Ash Content, Moisture Content, 

and RZT 

 

Output: Producer Gas Composition 

(CO, CH4, CO2, and H2) 

R2 = 0.9855 to 0.9928 

RMSE = 0.0523 to 

0.0915 

 

Test/Train%: 30/70 

w/cross validation 

 

Dataset Size: 63 

 

Epochs: 1000 

Baruah et 

al, 2017 

[12] 

Pyrolysis of cattle 

manure 

MISO, 2 layers, 8/6 neurons 

 

Hidden Layer Function: Not 

reported 

 

Inputs: Heating Rate, Temperature, 

Holding Time, Moisture Content, 

Sample Mass 

 

Output: Biochar Mass 

R2 = 0.8040 (test set) 

RMSE = 0.8347 

 

Test/Train%: 30/70 

w/o cross validation 

 

Dataset Size: 33 

 

Epochs: not reported 

Cao et al, 

2015 [76] 

Biomass in 

fluidised bed 

gasifier, sawdust, 

coconut shell 

coffee husk, 

sugarcane 

MISO, 1 layer, 15 neurons 

 

Hidden Layer Function: tansig 

 

Inputs: Equivalence ratio (air 

supplied to the stoichiometric air 

R2 = 0.987 

MSE = 0.71  

 

Test/Val/Train%: 

15/15/70 

w/o cross validation 

George et 

al, 2018 

[77] 
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bagasse, 

groundnut shell 

requirement), Moisture Content, 

Ash Content, Temperature, Carbon, 

Hydrogen, Oxygen 

 

Outputs: Producer Gas Yield, 

Producer Gas Composition (CO, 

CH4, CO2, and H2) 

 

Dataset Size: 70 

 

Epochs: 40 

MSW in fluidized 

bed reactor 

MISO, 1 layer, 8 neurons 

 

Hidden Layer Function: logsig 

 

Inputs: Carbon, Hydrogen, 

Nitrogen, Sulfur, Oxygen, Moisture 

Content, Ash Content, Equivalence 

Ratio, Temperature 

 

Output: LHV, LHVp (including tars 

and entrained char), Gas Yield 

R2 = 0.8994 to 0.9925 

MSE: 0.0077 to 0.0003  

 

Test/Val/Train%: 

15/15/70  

w/cross validation 

 

Dataset Size: 67 

 

Epochs: 100 

Pandey et 

al, 2016 

[11] 

MSW in fluidized 

bed reactor 

MIMO, 1 layer, 28 neurons 

 

Hidden Layer Function: logsig 

 

Inputs: Carbon, Hydrogen, 

Nitrogen, Sulfur, Oxygen, Moisture 

Content, Ash Content, Equivalence 

Ratio, Temperature 

 

Output: LHV, LHVp (including tars 

and entrained char), Gas Yield 

R2 = 0.9402 to 0.9905  

MSE = 0.0031 

 

Test/Val/Train%: 

15/15/70 

w/cross validation 

 

Dataset Size: 67 

 

Epochs: 100 

Pandey et 

al, 2016 

[11] 

Biomass in 

circulating 

fluidized bed 

gasifiers 

MISO, 1 layer, 2 neurons 

 

Hidden Layer Function: tansig 

 

Inputs: Ash Content, Moisture 

Content, Carbon, Hydrogen, 

Oxygen, Equivalence Ratio, 

Temperature 

 

Output: Producer Gas Yield, 

Producer Gas Composition (CO, 

CH4, CO2, and H2) 

R2 < 0.98 

RMSE = 0.093 to 0.332 

 

Test (also Val)/Train%: 

20/80 

w/o cross validation 

 

 

Dataset Size: 18 

 

Epochs: not reported 

Puig-

Arnavat et 

al, 2013 

[13] 

Biomass in 

bubbling fluidized 

bed gasifiers 

MISO, 1 layer, 2 neurons 

 

Hidden Layer Function: tansig 

R2 < 0.98  

RMSE = 0.036 to 790 

Puig-

Arnavat et 
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Inputs: Ash Content, Moisture 

Content, Carbon, Hydrogen, 

Oxygen, Equivalence Ratio, 

Temperature, Injected Steam Ratio 

 

Output: Producer Gas Yield, 

Producer Gas Composition (CO, 

CH4, CO2, and H2) 

Test (also Val)/Train%: 

20/80 

w/o cross validation 

 

Dataset Size: 36 

 

Epochs: not reported 

al, 2013 

[13] 

Downdraft 

biomass 

gasification 

integrated with 

power 

production unit 

MISO, 1 layer, 40 neurons 

 

Hidden Layer Function: tansig 

 

Inputs: Moisture Content, Volatile 

Materials, Fixed Carbon, Ash 

Content, Carbon, Oxygen, 

Hydrogen, Nitrogen, Sulfur, 

Temperature. Air to Fuel Ratio 

 

Outputs: Power Output (Watts) 

R2 = 0.999 

RMSE = 0.46 

 

Test/Train%: 30/70 

w/o cross validation 

 

Dataset Size: 86 

 

Epochs: not reported 

Safarian et 

al, 2020 

[78] 

Bubbling fluidized 

bed gasification 

MISO: 2 layers, 1 to 30 neurons 

 

Hidden Layer Functions: tansig, 

logsig, purelin 

 

Inputs: Carbon, Hydrogen, Oxygen, 

Moisture Content, Ash, 

Equivalence Ratio, Temperature, 

Bed Material, Steam/Biomass Mass 

Ratio 

 

Outputs: Producer Gas 

Composition (CO, CH4, CO2, and H2), 

Gas Yield 

R2 = 0.89 to 0.97 

MSE = 0.000444 to 

0.00126 

 

Test/Train%: 20/80 

w/o cross validation 

 

Dataset Size: 203 

 

Epochs: 2000 

Serrano et 

al, 2020 

[79] 

Supercritical 

water 

gasification, food 

waste 

MISO, 1 layer, 3-7 neurons 

 

Hidden Layer Function: logsig 

 

Inputs: Temperature, Residence 

Time, Feed Concentration 

 

Outputs: Producer Gas 

Composition(CO, CH4, CO2, and H2) 

R2 = 0.98 to 0.99 

MSE = 0.022 to 0.269 

 

Test/Train%: 30/70 

 

Dataset Size: 40 

 

Epochs: 40 

Shenbagaraj 

et al, 2021 

[80] 
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Pyrolysis of pine 

sawdust 

MIMO, 1 layer, 7 neurons 

Hidden Layer Function: 

 

Inputs: Space Velocity, 

Temperature, Particle Size 

 

Output: Producer Gas Yield, 

Producer Gas Composition (CO, 

CH4, CO2, and H2) 

R2 = 0.999 

MSE = 0.01 

 

Test/Train%: 15/85 

w/o cross validation 

 

Dataset size: not 

reported 

 

Epochs: not reported 

Sun et al, 

2016 [15] 

Biomass MISO, 1 layer, 20, 17 and 30 

neurons (corresponding to the 

different outputs below)  

 

Hidden Layer Function: tansig 

 

Inputs: percent of cellulose, 

hemicellulose and lignin 

 

Outputs: kinetic parameters: 

activation energy, pre-exponential 

factor and reaction order  

R2 = 0.93 to 0.94 

 

Test/Val/Train%: 

15/15/70 

w/o cross validation 

 

Dataset Size: 150 

 

Epochs: not reported 

Sunphorka 

et al, 2016 

[81] 

Downdraft fixed 

bed gasifier 

Multiple Designs, 1 layer, 10 

neurons 

 

Hidden Layer Function: tansig 

 

Inputs: Temperature Distribution, 

Air Flow Rate, Equivalence Ratio, 

Carbon, Hydrogen, Oxygen, 

Nitrogen, Moisture Content, 

Volatile matter, Fixed Carbon, Ash 

Content 

 

Outputs: Producer Gas 

Composition (CO, CH4, CO2, and 

H2), LHV 

R2 = 0.95 to 0.99 

RMSE = 0.1513 to 

2.2985 

 

Test/Val/Train%: 

15/15/70 

w/o cross validation 

 

Dataset Size: 10 case 

studies, (a total of 3831 

individual data points) 

 

Epochs: 1000 

Yucel et al, 

2019 [82] 

Pyrolysis of cattle 

manure 

Multi-Layer Perceptron: 2 layers, 

32 neurons per layer 

 

Hidden Layer Function: ReLU 

activation function 

 

Inputs: Heating Rate, Temperature 

R2 = 0.9995 

RMSE = 0.602 

 

Test/ Train%: 20/80 

w/o cross validation 

 

Zhang et al, 

2019 [31] 
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Outputs: Remaining Mass 

Dataset Size: not 

reported 

 

Epochs: not reported 

Where: MISO: Multiple Input Single Output, MIMO: Multiple Input Multiple Output, ReLu: 

Rectified Linear Unit, MSE: Mean Square Error, RSME: Root Mean Square Error. 

In the ANN model, each neuron that is not in the input layer uses a non-linear transfer function 

when moving towards the output layer [11]. The transfer functions that have been utilized with 

gasification and ANN models found in the literature are shown in the “Transfer Function” column of 

Table 2. When the ANN models exceed a single hidden layer, they are able to utilize the same or 

different transfer function between each respective layer. Therefore, an ANN model that has two 

layers is able to use two of the same or different transfer functions. When the ANN model transitions 

from the final hidden layer to the output layer, all of the ANN models in the literature review used 

a pure linear transfer function. Table 2 shows that three different types of transfer functions have 

been used with ANN models predicting gasification. These three different types of transfer functions 

are a hyperbolic tangent sigmoid function (tansig), a logarithmic sigmoid function (logsig), and a 

rectified linear activation function (ReLU). The activation functions are shown in Equations 2, 3, and 

4, respectively. Different transfer functions, and combinations thereof, can create different 

prediction accuracies for the same dataset. Therefore, it is important to iterate combinations of 

transfer functions when setting up an ANN model in order to find the best fit function for the 

gasification system. 

tansig: 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2) 

logsig: 𝑓(𝑥) =
1

1 + 𝑒−𝑥
(3) 

ReLU: 𝑓(𝑥) = max(0, 𝑥) (4) 

The output of the MIMO ANN Model with a single hidden layer in Figure 3 is shown as 𝑦𝑗  in 

Equation 5. In Equation 5, neurons, 𝑥𝑖, distribute the input signals to the hidden layer, 𝑗 [11]. he 

neurons in hidden layers sum up the input signal 𝑥𝑖 , after multiplying by the weight 𝑤𝑖𝑗 . 𝑓 

represents the activation function, 𝑑 is the dimension of the network, 𝑙 is the number of layers, and 

𝑤𝑖𝑗
𝑙  is the weight which belongs to the network with 𝑙 layers and has 𝑖 input and 𝑗 hidden layers [11]. 

The MIMO ANN model with a single hidden layer in Figure 3 weights are described mathematically 

in Equation 6.  

𝑦𝑗 = 𝑓 ( ∑ (𝑤𝑖𝑗
𝑙 𝑥𝑖

𝑙−1)

𝑑(𝑙−1)

𝑖=0

) (5) 

𝑤𝑖𝑗
𝑙 ∈ {

1 ≤ 𝑙 ≤ 𝐿 𝑙𝑎𝑦𝑒𝑟𝑠

0 ≤ 𝑖 ≤ 𝑑𝑙−1 𝑖𝑛𝑝𝑢𝑡

1 ≤ 𝑗 ≤ 𝑑𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

(6) 
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Table 2 shows the number of neurons in the “Neurons” column and the different number of 

layers in the “Number of Layers” column for different ANN models. Once the ANN model has 

reached an output value 𝑦𝑖𝑗 , it then utilizes a training function to train the neural network to 

recognize an input and map to an output. All the research found in the literature review used the 

Levenberg-Marquardt back propagation algorithm (LMBPA) in order to train the neural network. 

This is shown in the “Training Function” column of Table 2. The LMBPA gives accurate results for 

moderate sized neural networks [11]. In tandem with a training function, the ANN model also uses 

a learning function in order to manipulate the individual weights and thresholds of the network. All 

the research found in the literature review showed that a gradient descent (GD) function was 

employed by the ANN model. This is shown in the “Learning Function” column in Table 2. Equation 

7 shows the LMBPA where the Jacobian, 𝐽, is calculated using backpropagation, followed by the 

Hessian 𝐻 = 𝐽𝑇𝐽 and the gradient calculation (𝑔 = 𝐽𝑡𝑒) where 𝑒 is the network error [11]. In this 

function, 𝜇 is a scalar, and after each successful step, the value of 𝜇 is increased or decreased as 

determined by the cost function. The LMBPA minimizes the mean squared error (MSE) between the 

target output and the calculated output. 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑡𝑒 (7) 

In order to check the accuracy of the ANN model, the dataset is randomly divided into 

proportions for training, validation, and testing purposes. The proportions used for respective 

training, validation, and testing purposes by ANN models used to predict gasification systems are 

shown by the “Data Division” section in Table 2. Additionally, some ML models employed cross-

validation within the network, allowing for the training, validation, and testing data to be re-split 

multiple times. This process finds the best representative model. Whether an ANN model that is 

predicting gasification systems used cross validation or not is shown in in Table 2. For consistency, 

only papers that used a form of waste as fuel (as opposed to a fossil fuel) were reviewed. 

In papers where multiple models were considered, the parameters of the best performing model 

were included in Table 2. Interestingly, models with multiple hidden layers did not necessarily 

perform better than models with only one layer. Furthermore, in most cases good performance can 

be achieved with 10 or fewer neurons. Temperature, equivalence ratio and moisture content, were 

consistently important inputs [13, 76, 78], and in some models the carbon percentage was also 

important [78]. Temperature was particularly impactful for the hydrogen output [15, 80]. Gasifiers 

using a wide variety of different fuels including agricultural biomass, municipal solid waste, or 

industrial waste can be represented with these techniques. The most common output variables 

predicted were: Power Output (units varied) and Producer Gas Composition (typically: CO, CH4, CO2, 

and H2).  

3.5 GBM Models with Gasification 

GBM ML models utilize available data as an efficient solving tool for regression problems that 

can make predictions for datasets with complex non-linearities [83]. The GBM ML model uses an 

ensemble of weak predictive learners, known as decision trees, to create an accurate predictive 

model. Each weak predictive learner corrects on the predecessor’s error through a gradient descent 

function that is used to minimize the error and thus fit the model [84, 85]. An illustration of a gross 
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representation of the GBM process that shows how the model leverages an ensemble of weak 

predictive learners for a strong prediction tool is in Figure 4. 

 

Figure 4 Gross representation of a GBM ML model method. 

As shown in Figure 4, the GBM ML model minimizes the expected loss function through the use 

of decision trees [86]. The parameters of the GBM ML model include depth of trees, the learning 

rate, and the number of iterations [86]. The GBM algorithm is mathematically expressed as a 

summation of decision trees in Equation 8. 

Generalized GBM model: 

𝑓𝑚(𝑥) = ∑ 𝑇(𝑥, 𝜃𝑚), 𝑇(𝑥, 𝜃𝑚)

𝑀

𝑚=1

(8) 

𝜃𝑚  is the parameter of the decision tree and 𝑀  is the number of decision trees. A gradient 

descent loss function is then used by the GBM ML model in order to optimize the next parameter, 

shown in Equation 9 [84, 85].  

GBM Loss Function:  

𝜃𝑚+1 = argmin ∑ 𝐿(𝑦𝑡 , 𝐹𝑚(𝑥) + ℎ(𝑥, 𝜃𝑚+1))

𝑁

𝑡=1

(9) 

Table 3 provides an overview of different GBM models for regression found in the literature that 

were used for prediction of gasification systems. Similar to ANN ML models, GBM models also split 

the dataset into proportions to be used for testing, training, and validation of the model. 
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Additionally, all GBM models used with gasification systems employed cross-validation within the 

algorithm in order to randomize the data multiple times and find the best-fit m. 

Table 3 GBM ML models for regression used with gasification. 

Reactor Design Model Details Test Accuracy Source 

Wet organic 

waste 

GBR 

Inputs: Feedstock Composition, 

Operational Conditions, 

Outputs: Producer Gas Composition 

(CO, CH4, CO2, and H2) 

R2 = 0.90 to 0.95,  

RMSE = 0.39 to 2.07 

Li et al, 

2020 [87] 

Rice husks in 

fixed bed updraft 

gasifier 

GBR 

Inputs: Equivalence Ratio, Bottom 

Temperature, Steam Flow rate 

Outputs: Producer Gas Composition 

(CO, CH4, CO2, H2, and N2)  

R2 = 0.59 to 0.78 Wen et al, 

2021 [14] 

Pyrolysis of algae XGB 

Inputs: Elementary Feedstock 

Composition (Carbon, Hydrogen, 

Oxygen, and Nitrogen) Ratio of 

elementary composition 

(Hydrogen/Carbon, Oxygen/Carbon 

and Nitrogen/Carbon), Proximate 

Analysis; Ash content; Fixed carbon, 

Volatile Compound, Pyrolysis time, 

Heating rate, Temperature, 

Outputs: Biochar Yield 

R2 = 0.84 Pathy et al, 

2020 [33] 

Pyrolysis of cattle 

manure 

GBR 

Inputs: Temperature, Heating Rate, 

Atmosphere Type 

Outputs: Remaining Mass 

R2 = 0.9989, RMSE = 

0.820 

Zhang et al, 

2019 [31] 

Pyrolysis of 

textile dyeing 

sludge and 

incense sticks 

GBR 

Inputs: Blend Ratio, Heating Rate, 

Atmosphere Type, Temperature 

Outputs: Mean Remaining Mass 

Derivative Thermogravimetry and 

Differential Scanning Calorimetry 

R2 = 0.5978 to 0.9989 

RMSE = 1.695 to 1.762 

Wen et al, 

2020 [32] 

Where: GBR: Gradient Boosted Regression, XGB: eXtreme Gradient Boosted Regression. 

The inputs to the GBR models were similar to the ANN models. A wider variety of different types 

of biowaste was use in the papers employing BGR modeling, which might account for some of the 

papers having lower metrics. However, good performance (R2 and RSME) can also be achieved in 

most cases with GBR models. Of the models that included an analysis of the importance, 
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Temperature [14, 31-33] was consistently the most impactful predictor, with Heating Rate and 

Blend Ratio also having a significant contribution [31, 32]. 

3.6 Performance Evaluation of ANN and GBM ML Models 

The error for the ANN and GBM ML models used for regression predictions of gasification 

systems can be found in the “Test Accuracy” columns in Table 2 and Table 3. The regression model 

accuracy for all the ML models in Table 2 and Table 3 utilize one or multiple of four evaluation 

metrics. These four types of evaluation metrics utilized by the ML models are the mean absolute 

error (MAE), the mean standard error (MSE), the root mean squared error (RMSE), and the 

coefficient of determination (R2). They are described respectively by Equations 10, 11, 12, and 13. 

These evaluation metrics are calculated by comparing the output created by the ML model and 

comparing it to the expected real value output found in the dataset. In the following equations 

𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the value generated by the ML model, 𝑌𝑎𝑐𝑡𝑢𝑎𝑙 is the expected value on the test dataset, 

and 𝑛 is the number of iterations of the ML model. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑎𝑐𝑡𝑢𝑎𝑙|

𝑛

𝑖=1

(10) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑎𝑐𝑡𝑢𝑎𝑙)

2
𝑛

𝑖=1

(11) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑎𝑐𝑡𝑢𝑎𝑙)

2
𝑛

𝑖=1

(12) 

𝑅2 = 1 −
∑ (𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑛
𝑖=1

∑ (𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒)2𝑛
𝑖=1

(13) 

Table 2 and Table 3 demonstrate how effective ML models can be to predict key performance 

parameters in gasification systems. These models achieved an R2 value as high as 0.995, an RMSE 

value as low as 0.049, and an MSE as low as 0.0004. 

4. Conclusions 

ANN and GBM ML models for regression have been employed in numerous recent studies in 

order to make accurate predictions for gasification systems. The development of these ML models 

allows for better understanding and optimization of the gasification process. ML models allow for 

an alternative form of gasification system investigation than the traditional means of computational 

fluid dynamics modeling (CFD) or experimental iterations. There are many drawbacks to the 

traditional means of CFD modeling and experimental iterations to describe gasification systems. The 

former, CFD modeling, requires a high level of expertise, proper computing power, and can take a 

long time to create multiple modeling scenarios. The latter, experimental iterations, also requires a 

high level of expertise and can take a long time, but they additionally can have a high cost since 
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there must be a large investment into proper materials and data analysis equipment. ML models 

mitigate the issues surrounding CFD modeling and experimental iterations of gasification systems 

by combining existing iterations of these methods and synthesizing them into an accurate and 

specific algorithm. The advancement of integration of ML models into gasification and other WtE 

technologies will serve to speed up the progress within these fields and assist in creating a more 

sustainable humanity. Note that diverse ML methods applied to gasification exist, including 

supervised, unsupervised and hybrid techniques. A complete description of this broad and evolving 

topic cannot be accomplished in one review paper. A follow-on review could include other methods 

such as support vector machines (SVMs), random forests (RFs), Naïve Bayes classifications, etc. 
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