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Abstract 

We address the Wind Farm Layout Optimization (WFLO) problem and tackle the optimal 

placement of several turbines within a specific (wind farm) area by incorporating additional 

aspects of an economically driven target function. With this, we contribute three refinements 

for WFLO research: First, while many research contributions optimize the turbines’ locations 

subject to maximum energy production or energy efficiency, we instead pursue a strategy of 

maximizing a profit objective. This enables us to incorporate inner-farm wiring costs 

(underground cable installation). For this, we explore the impact of using MSTs (Minimum 

Spanning Trees) and adding junction (so-called “Steiner”) points to the terrain plane. Second, 

while most research focuses on finding optimal x and y coordinates (i.e., address two-

dimensional turbine placement), we also optimize the turbines’ hub heights z. Third, we also 

provide a software implementation of the Gaussian wake model. The latter finds entrance to 

the open-source WFLO research framework that comes as package wflo for statistical 

software R. We find that taking wiring cost into account may lead to very different turbine 
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placements, however, increasing overall profit significantly. Allowing the optimizer to vary the 

hub heights may have an ambiguous impact on the wind farm profit. 

Keywords  

Wind farm layout optimization (WFLO); Gaussian wake model; wiring cost; hub height 

optimization; wind energy; R package 

 

1. Introduction 

Finding the optimal spatial arrangement of turbines’ locations inside a wind farm is known in the 

literature as “Wind Farm Layout Optimization” (WFLO). Since turbine arrangements affect the wind 

wake pattern in the farm under investigation, downwind turbines are requested to avoid the wake-

upwind turbines emit, as wake reduces wind speed and therefore, leaves less kinetic energy for the 

downwind turbine, rendering it less effective in energy harvesting. WFLO is a mathematically 

challenging task. Only minor changes in the location of one turbine change the entire problem 

space, i.e., the wake pattern all other turbines are facing when they are to be placed. WFLO is said 

to be 𝑁𝑃-hard (non-deterministic polynomial-time hard). 

Founding contributions on WFLO by [1] and [2] made restrictive assumptions such as that 

turbines can only be placed on a relatively coarse grid of possible locations (discrete domain rather 

than a continuous domain), flat terrain, given hub heights, unique wind directions and speeds, and 

others. Subsequent research successively relaxed these assumptions. For example, [3] discuss a 

continuous problem domain, while [4] propose methods for complex terrain situations, and [5] 

optimize with respect to hub heights. 

We address three aspects of the broader WFLO scope that have found minor investigation in the 

literature. First, we incorporate underground cable cost into the problem. By its very nature, WFLO 

seeks to optimize the locations of turbines within a find farm area (only) dependent on wind 

direction and wake interference. However, the underground wiring of each of the turbines is an 

important factor in the installation expense: The wire itself must be capable of carrying huge 

amounts of electricity and must, therefore, be amply dimensioned, which is costly. Also, trenching 

the wires is extensive as well, depending on the soil properties. Each meter of underground wiring, 

therefore, increases installation costs. However, the layout optimization procedure usually ignores 

the demand for asshortaspossible wire lengths. 

Second, we discuss a Gaussian-Jensen wake model. In WFLO, the Jensen wake model is quite 

popular because it is simple to comprehend and quick to compute. However, it has several 

downsides: It is a two-dimensional model that shows a sharp distinction between wind regimes 

“inside” and “outside” the wake of an upwind turbine. Mathematically, this means that the model 

is not differentiable at its borders. Typically, a Gaussian wake model is proposed to overcome that 

downside. Gaussian wake has been widely investigated in the literature. Still, an “out-of-the-box” 

usable implementation of the model is missing in many research and application fields. We, 

therefore, provide a feasible implementation in wflo. 

Third, we take into account possible variations in the hub heights of turbines. Most WFLO 

approaches optimize the turbines’ locations only regarding their 𝑥 and 𝑦 coordinates. Variations in 
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terrain heights are typically neglected as a simplification, assuming flat terrain. Also, deliberately 

varying the turbines’ tower heights to reduce downwind wake influence on other turbines has been 

discussed in the literature before but is still frequently ignored to reduce complexity. We, therefore, 

show an implementation of possible optimizations regarding the turbines’ 𝑧 dimension. 

In all cases, we work with wflo and either use or extend its built-in functionality. wflo is a recently 

published open-source package for the statistical software R. Package wflo (see [6]) provides a 

quality data set and refined functions to deal with WFLO problems. It implements the widely used 

Jensen wake model, provides an interface to all-purpose optimization procedures, and employs an 

economically based (profit-oriented) target function, as according to [7], optimizing energy yield or 

farm efficiency alone, as it is done in many research contributions, is not always a meaningful goal. 

Note that multi-objective targets may also overcome this as proposed by, e.g., [8]. 

After all, wflo provides a quasi-standard of test conditions and thus works as a framework that 

ensures comparability among research contributions. Our work can be conducted using wflo, 

ensuring maximum comparability throughout. The remainder of this article is structured as follows: 

Section 2 provides additional details, motivation, and context for the three topics discussed here. In 

Section 3 we discuss our methods, while Section 4 presents the results. In Section 5 we draw a brief 

conclusion. 

2. Contributions and Context 

This section provides details on the paper’s contributions. We discuss cable cost considerations 

in WFLO, the three-dimensional Gaussian-Jensen wake model implementation, and how we 

consider hub heights during WFLO. 

2.1 Cable Length Optimization 

Regardless of the configuration of 𝑉  turbines within a wind farm, these turbines necessitate 

connection to the main grid via underground cables. As underground wiring is expensive, the usual 

approach is to connect the turbines point by point and then select an interconnection point from 

which to deliver the electricity to the grid. Therefore, the inner-farm wiring problem is finding the 

shortest connection from point to point, reducing possibly unnecessary cable routes to a minimum. 

In graph theory, the turbine locations (two-dimensional cartesian coordinates, i.e., pairs of 𝑥 and 𝑦) 

are called “vertices,” while the cable connections between them are “edges.” Vertices and their 

edges altogether form a “tree.” The desired solution to the wiring problem is expressed by a 

minimum sum of lengths of the 𝐸 edges, while all vertices must be connected to the tree (at least 

once; multiple connections are allowed). For example, [9] or [10] deal with this problem. [11] 

provide an overview. 

A “minimum spanning tree” (MST) is the first solution. In an MST, the number of edges will be 

𝐸 = 𝑉 − 1. Given an MST, no other way to connect the vertices can be found at which the total 

length of edges is less than that in the MST solution. A farm planner will always develop an MST for 

the inner-farm wiring plan for a given turbine setup unless constraints like land property rights, 

irregularly processable ground, or similar dictate otherwise. Computing an MST from a given 

number of vertices can be carried out relatively quickly using efficient algorithms by Boruvka, 

developed in 1926 (see [12] for a translation from Czech to English), [13] or [14]. 
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In this paper, we combine the profit-based WFLO target function used in wflo with an MST 

constraint: During each iteration of the WFLO optimization procedure, we compute the total length 

of the edges of the MST for the temporary solution the respective iteration handles, weight that 

total length with its economic cost and add the resulting cost to the installation cost already handled 

by the target function. This way, we integrate the shortest route constraint into the single-objective 

target function so that the optimizer can provide a solution that generates maximum profitability, 

not only taking annual electricity production (AEP), sale price, and thus, revenue into account but 

also turbine installation cost and, prominently, wiring cost. The resulting turbine setup can be 

expected not necessarily to provide the shortest possible total edge length but to minimize edge 

length as a constraint, subject to total profit in general. 

A second step to optimize wiring cost can be reducing total edge length beyond an MST solution. 

This can be accomplished by adding additional vertices to the tree. These vertices do not have to 

represent actual wind turbines. It may be sufficient to consider the additional points as junction 

points for the cable. The vertices that represent actual turbines are called “terminals.” In contrast, 

the additional junction point vertices are “Steiner” points, so-called after Swiss mathematician 

Jakob Steiner (see [15] for an English recapitulation of the original work). Figure 1 provides an 

example. In the left panel, the problem is stated: Three points, denoted A, B, and C, represent the 

terminals (the actual turbines) in two-dimensional space. The middle panel shows an MST solution. 

Two edges connect the three points, and no other connection can be found that connects the points 

using a shorter route. As the edge from A to B is 50 and the edge from B to C is 40, the total length 

is 90. The right panel adds a Steiner point D (a junction point) to the terminals, resulting in four 

vertices. Now, the edge lengths are 40 (A to D), 29 (C to D), and 18 (B to D), resulting in a sum of 87 

< 90. 

 

Figure 1 MST and Steiner solution to the inner-farm wiring problem. A, B, and C are 

''terminals'' (e.g., actual turbine locations), while D is a Steiner point. Numbers denote 

edge lengths. 

Minimum Steiner tree problems are 𝑁𝑃-hard (unsolvable in non-deterministic polynomial time), 

as the optimal number of Steiner points and their optimal location must be determined. [16] 

describe the problem in detail, while [7] solve the problem for a given turbine setup using the open-

source software package “GeoSteiner” (http://www.geosteiner.com/). Algorithms like the one 

implemented by GeoSteiner use approximations, and methods to find exact solutions are unknown. 

[17] provide an established approximation method, while [18] perform a more recent problem 

assessment. 

As Steiner tree optimization is too complex for online WFLO, we provide a procedure that takes 

a given turbine setup (possibly a WFLO result) and based on the corresponding MST, iteratively adds 

Steiner points. The optimal locations of these points are subsequently approximated using a genetic 

algorithm (GA). The procedure keeps adding and optimizing Steiner points until no further 
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improvement in total edge length can be attained. The number of resulting Steiner points from that 

procedure is usually reasonably low compared to the number of terminals. This grants a relatively 

short computation time. 

2.2 Gaussian Wake Model 

The Jensen model is the most frequently used wake model in the WFLO literature. The reasons 

may be the model’s simplicity, fast computability, and relatively high accuracy. However, the model 

has two major drawbacks: First, it is one-dimensional. This fact implies that within the wake cone, 

the model spans, at any given distance, the model’s outcome - the wind speed - is constant, 

regardless of the angle between the point of interest and the wake-causing point, i.e., the turbine. 

In reality, however, the wake is more severe, close to the cone’s core, and less severe towards its 

borders. This is connected to the second drawback, the fact that the model is non-continuous, i.e., 

the cone’s borders imply a hard transition between “inside” and “outside” the wake, resulting in a 

“jump” in modeled wind speeds. Figure 2 shows both drawbacks in the usual top view of the wake 

model. Due to this step, the wind speeds are non-differentiable, and gradient-based optimizers can 

hardly be applied to the WFLO problem using Jensen’s wake model. 

 

Figure 2 Typical Jensen wake model. Note that downwind speed 𝑣 is proportional to 

distance 𝑥 and that there is a strict “jump” between wind speeds “inside” and “outside” 

the wake cone. 

Combining the model with a Gaussian smooth transition was first proposed by [19], resulting in 

the so-called Gaussian wake model. Several types of Gaussian wake models have been proposed. 

Most of them are based on a Jensen model, while [20] combine a Gaussian approach with the wake 

model by [21]. The Gaussian wake model addresses both inherent problems of the Jensen model: It 

models wind speed in a manner that allows for greater severity of the wake near the core while 

ensuring that the borders are smooth, continuous, and differentiable. Figure 3 shows the Gaussian 

Jensen model. [5] bring the model into the third dimension, allowing for free choice of 𝑥, 𝑦 and 𝑧 

coordinates in positioning the downwind location for which the model is to return wind speed 

information. However, their model is computationally intense and, thus, likely not feasible in wind 

farm layout optimization runs, which require hundreds of millions of wake computations during 

their iterative nature of adjusting turbine locations. Here, we provide two Gaussian-Jensen wake 
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implementations that are already part of wflo. The first implementation, function 

GenerateGauss(), takes some time to pre-compute the three-dimensional space behind a turbine 

and stores the computed wind speeds in a tensor object. Users can choose the spatial resolution, 

which immediately impacts the pre-computation time. However, once pre-computations are done, 

a WFLO procedure can be speedy since wind speeds can be looked up in the tensor using the 

function GaussWS() instead of being computed. The second implementation, function 

QuickGauss3D(), computes the Gaussian-Jensen wind speed at one single location in three-

dimensional space. This is still fast but slower than the look-up table approach. In exchange, this 

function does not require pre-computation. 

 

Figure 3 Gaussian Jensen wake model. Note that although there is a sharply determined 

border between wind speeds “inside” and “outside” the wake cone (lines at those 

borders), this is only to show the similarity to the Jensen model. However, the Gaussian 

model has no strict “jump” here. 

2.3 Hub Heights Optimization 

Virtually all real-world wind farms exhibit at least some variance in terrain elevation. Thus, 

although all turbines in the farm may use the same tower type, hub heights above overall ground 

may vary, resulting in differences in how turbines shed wind wakes on each other. Figure 4 sketches 

how hub height variation influences wake patterns in the farm. 

 

Figure 4 Upwind turbine (foreground) casting wake on downwind turbine (background) 

on a 3D topology. 
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Varying the hub heights of the turbines may seem an eligible way to avoid wake or reduce wake 

influence from full to only partial coverage.1 Increasing hub height will result in higher and/or more 

constant wind speed (and thus, most likely, in higher energy yield) but also increases installation 

cost due to higher towers (material cost), additional cost for the installing tower crane, and others. 

Decreasing hub height has the reverse effect, but for pairs of turbines, it may be desirable to 

increase an upwind turbine’s height and decrease the respective downwind turbine’s height to have 

the downwind turbine avoid waking the upwind turbine shed into its general direction. In the 

literature, [22-25], among others, discuss this problem. 

The topic results in the WFLO problem turning into a three-dimensional optimization problem, 

seeking optimal locations in terms of 𝑥 and 𝑦 coordinates for each turbine and 𝑧 locations for the 

optimal hub heights. Generalizing the WFLO problem this way is relatively simple to do with wflo, 

mainly because the built-in function PartialJensen() is already prepared to compute partial wake 

coverage and different heights along the three-dimensional wake cone. Elevation data is available 

for the wflo wind farm terrain. Figure 5 presents the heights. The area possesses heights between 

84 and 228 m. 

 

Figure 5 Elevation map in the wind farm area, contour lines show elevation in meters 

above sea level. Lighter shades of blue represent greater elevations, darker shades 

denote lower heights. 

  

                                                      
1 The other way around may be worthwhile, i.e., avoid partial wake to obtain full wake. This may reduce energy output 
and asymmetric thrust on the downwind turbine, which is otherwise known to result in fatigue load. Our procedure can 
be applied to this type of problem as well. 
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3. Methodology 

3.1 Cable Length Optimization 

Our target function for optimization mimics the function Profit() from the wflo package. The 

function first checks for the validity of the turbine setup in terms of minimum distances between 

them and returns a large positive value if violated, which signals the optimizer that the current 

direction of optimization is suboptimal. The function then proceeds to minimize negative profit, 

which is equivalent to maximizing profit.2 Profit is 

𝜋 = Revenue(X, Y) − Cost(X, Y), (1) 

where 𝑋 and 𝑌 are 𝑉-dimensional vectors containing the respective 𝑥 and 𝑦 coordinates of the 𝑉 

turbines, revenue depends on the sum of AEP at the given locations for each turbine, which is 

multiplied by an assumed sale price. wflo provides both internally. Also, for each of the turbine 

locations, the function computes whether that location is in the wake of any other turbines in the 

current setup. The function considers a Jensen wake model but also accounts for multiple wake and 

partial wake coverage. Given wake, the function computes a wind speed deduction factor. Wind 

turbine power output [W] can be expressed as the following 

𝑃 =
1

2
𝐶𝑃𝜌𝐴𝑣

3, (2) 

where 𝐶𝑃 is the power coefficient, 𝜌 is air density [kg/m3], 𝐴 is rotor swept area [m2] and 𝑣 is wind 

speed [m/s]. As power output is proportional to the third power of wind speed (𝑃 ∝ 𝑣3), the target 

function multiplies AEP by the third power of the wind speed deduction factor. 

Considering the cost, the function first utilizes the wflo internal Cost() function but then uses 

ComputeMST() from package emstreeR to compute the MST for the given setup. ComputeMST() 

uses the algorithm by Boruvka, which essentially operates by first subdividing the given tree into 

detached fractions and then iteratively reattaching them using the shortest possible routes. Given 

the MST, the total cable length is computed and multiplied by a cost factor [€/m]. As for that cost 

factor, we assume 300 €/m for the cable and its installation cost (groundwork). This is a crude 

assumption based on several civil and underground engineering companies’ proposals. Actual 

underground cable cost may depend on soil conditions, farm size, and market conditions. Using real-

world cost data may refine the results. 

Finally, revenue and cost are collected, and the negative difference between them is returned. 

We then use this function to optimize the locations of 20 turbines within the real-world area 

supplied by wflo and use function genoud() from package rgenoud by [26] to optimize. genoud() 

implements a GA, which is known to find satisfactory solutions, especially in the wflo literature. See 

[27] for an overview. Also, note that the workhorse functions of wflo are not limited to using GA for 

optimization. More recent optimization procedures, e.g., the ones presented by [8, 28-31] can also 

be plugged in. 

                                                      
2 This is quite common since many optimizers are by default minimizers, so to maximize profit, it is equivalent to 
minimizing negative profit, which optimizers can handle more easily. 
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After optimization subject to MST, or for any given setup of 𝑉  turbines in general, we first 

compute the respective MST. Based on that, we iteratively add Steiner points to the setup 

individually (outer loop). For each number of Steiner points, the inner loop optimizes the Steiner 

points’ locations using genoud(). If, for any state of the outer loop, no improvement (i.e., no shorter 

route) can be found compared to the so-far best solution (i.e., the state of the former loop round), 

the function aborts and returns the best result found. Function MakeSteiner() is accessible in the 

supplemental material, together with a demonstration function call. 

3.2 Gaussian Wake Model 

The algorithm starts by computing downwind wake cone radius 𝑟 [m] (see Figure 2). According 

to [32], for any given downwind distance 𝑥 [m], the radius of the cone is based on the rotor radius 

𝑟0 [m] and the dimensionless factor 𝛼 such that 

𝑟 = 𝑟0 + 𝛼𝑥, (3) 

where 𝛼 depends on the hub height 𝑧𝐻 [m] and the terrain roughness length 𝑧0 [m]. The latter is 

usually assumed to be 𝑧0 = 0.1, which is a fair estimate for typical on-shore sites. With 

𝛼 =
0.5

log (
𝑧𝐻
𝑧0
)
, (4) 

𝑟 can be computed immediately. In the three-dimensional setting discussed here, not only 𝑥 is given 

(the distance downward the turbine), but also 𝑦 and 𝑧. 𝑦 denotes the perpendicular offset from the 

𝑥 axis (see Figure 2). Thus, it is assumed that 𝑦 = 0 refers to a point on the 𝑥 − 𝑧 plane and that 𝑦 

may take negative values. 𝑧 is the height axis, starting at 0 on the ground and growing beyond the 

turbine’s nacelle (hub height). The model processes 𝑦 and 𝑧 for any given 𝑥. 

Typically, a single wind speed 𝑢Ref [m/s], measured at a given reference height 𝑧Ref, is given. This 

wind speed must be adjusted for the desired height above ground level. We do that using 

Hellmann’s power law 

𝑢 = 𝑢Ref ⋅ (
𝑧

𝑧Ref
)
𝛽

, (5) 

where, according to empirical studies by [33], 𝛽  usually takes values around 0.14. For bivariate 

Gaussian processing (computing wind speeds in the 𝑦 − 𝑧  plane for a given 𝑥 ), the 𝑧 -mean is 

assumed at the hub (𝑧𝐻), also implying that the mean to 𝑦 is 0: 

𝛍 = (
0
𝑧𝐻
) , (6) 

assuming Gaussian distribution with mean 𝛍. As suggested by [5], assuming the squared rotor radius 

as the Gaussian standard deviation is reasonable. However, that implies one variance value at the 

hub and a different value at any given point down the 𝑥  axis, as the Jensen model implies an 

increasing rotor swept area (“radius” 𝑟 ) down that axis. From that, we obtain the symmetric, 

positive definite variance-covariance matrix 
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𝚺1 = (𝑟
2 0
0 𝑟2

) (7) 

at the point of interest, i.e. 𝐗𝑥 = (𝑦, 𝑧)𝑇 given 𝑥, and 

𝚺2 = (
𝑟0
2 0

0 𝑟0
2) (8) 

at the hub. Now, the Gaussian densities at these points are computed following 

𝑓(𝐗, 𝛍, 𝚺) =
1

√(2𝜋)2|𝚺|
exp (−

1

2
(𝐗 − 𝛍)𝑇𝚺−1(𝐗 − 𝛍)) , (9) 

and using 

𝒟1 = 𝑓(𝐗𝑥, 𝛍, 𝚺1) (10) 

for the densities at the rotor as well as 

𝒟2 = 𝑓 ((
0
𝑧𝐻
) , 𝛍, 𝚺2) , (11) 

for the densities at distance 𝑥 “behind” the rotor, we obtain the fraction of the densities as 

𝒟 =
𝒟1

𝒟2
. (12) 

The Jensen model computes the downwind speed 𝑣  (see Figure 2) as a function of the 

undisturbed wind speed 𝑢 as 

𝑣 = 𝑢 (1 −
2

3
(

𝑟0
𝛼𝑥 + 𝑟0

)
2

) . (13) 

Deriving concerning the fraction of these wind speeds yields 𝑝 =
𝑣

𝑢
∈ (0,1), which determines 

the percentage amount of wake influence on the undisturbed wind speed as 

𝑝 = 1 −
2

3
(

𝑟0
𝛼𝑥 + 𝑟0

)
2

. (14) 

With that, we finally obtain 

𝑣𝑥,𝑦,𝑧 = 𝒟 ⋅ (1 − 𝑝) ⋅ 𝑢. (15) 

3.3 Hub Heights Optimization 

[34] report turbine installation costs for several different hub heights. We use their data and 

approximate a height-dependent cost function by 
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𝐶(𝑧𝐻) = 24,000 + 750 ⋅ 𝑧𝐻, (16) 

where 𝑧𝐻 again represents hub height and 𝐶(⋅) is the resulting cost in €. For example, heights of 

(100; 120; 140) m return (99,000; 114,000; 129,000) € installation cost, which is close to the 

reported values for these heights of (98,000; 116,000; 128,000) €. 

However, not all turbine type/hub height combinations are feasible. As [35] points out, the 

clearance of the turbine blades above ground must be no less than 75 ft (23 m). Therefore, the rotor 

radius 𝑟0 plus 23 m gives a lower threshold of hub height. As the default rotor radius in wflo is 45 

m, a hub height must be at least 45 + 23 = 68 m. Also, we consider a maximum hub height of 150 m 

since greater hub heights may begin to increase cost progressively instead of following our simple 

linear model. 

The main challenge in using wflo for this type of three-dimensional optimization is that the entire 

wflo infrastructure is designed to accept a vector of interchanging 𝑥  and 𝑦  coordinates. To 

circumvent that, we define a global matrix object which contains three columns for 𝑥, 𝑦, and 𝑧. As 

the Profit() function conveniently allows us to replace the internal Yield() function with a user-

defined one, we use this point to access the global object at each iteration of the optimizer, update 

the AEP information at each given turbine location by the height at that point using equation (5), 

and feed the adjusted yield back. We, therefore, require only a short wrapper function that wraps 

Profit() and accordingly updates the global data object. Profit() then calls Yield() and Cost() 

internally, where Cost() is a user-defined function that implements equation (16). The three 

functions (Yield(), Cost(), and the wrapper HProfit()) are available in the supplemental material, 

together with some code that sets up the domains for all variables, provides initial values, and calls 

the optimization run using genoud(), also exploiting the genoud() capability to utilize parallel 

computing by providing a standard R cluster object to it via the function call. 

4. Results 

We compare our optimization run subject to cable length to the built-in benchmark solution in 

wflo. That benchmark solution results from an extensive optimization using the built-in Profit() 

function. Details are provided by [36]. The benchmark encompasses 20 turbines located at high-

yield (in terms of AEP) locations while minimizing wake influence. The wind farm area, located in 

the north-east of Germany, is a square of 5 × 5 km and contains pre-computed AEP data at a raster 

of 200 × 200 m resolution, resulting in 25 × 25 tiles. These tiles are depicted in Figure 6. Blue shades 

of the tiles show AEP values, where lighter blue represents higher values and darker shades depict 

lower values. Also, the figure contains AEP contour curves and an arrow field representing wind 

directions. Gold dots show the turbine locations. The depicted benchmark setup yields a total profit 

of 11,622,939 € per year. 
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Figure 6 wlfo benchmark solution: Wind farm arrangement of 20 turbines, blue tiles, 

and contour curves represent AEP. 

4.1 Cable Length Optimization 

The benchmark setup’s MST total route length is 15,220.4 m. Cable cost is not taken into account 

in the standard profit function but amounts to 4,566,119 € (228,306 € per year assuming a turbine’s 

life span of 20 years and no interest), so the profit subject to cable cost remains 11,394,633 €. In 

contrast, the cable optimization result is depicted in Figure 7. Its pure AEP profit (i.e., not taking 

cable cost into account) is 11,603,227 €, i.e., 19,712 € below that of the benchmark solution. 

However, its route length is only 10,540.7 m (over 30% less than for the benchmark), resulting in a 

cable cost of 3,162,205 € (158,115 € yearly), so the profit taking cable cost into account is 11,445,112 

€ (50,478 € more than for the benchmark). 

 

Figure 7 Wind farm arrangement of 20 turbines, optimized subject to cable length. 
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As an example for Steiner optimization, we again use the benchmark solution as a basis. Figure 

8 shows the MST for that setup. We then run the iterative Steiner procedure and find an optimum 

for four added Steiner points. Figure 9 depicts the Steiner tree, where the Steiner points are drawn 

in blue. The total route length is reduced by 3% to 14,799.7 m, and the cable cost amounts to 

4,439,905 € (221,995 € yearly), increasing total profit by 6,311 € compared to the benchmark. 

 

Figure 8 Minimum spanning tree for the built-in WFLO benchmark solution of wlfo. 

 

Figure 9 MST (red) and Steiner points (blue) for the built-in WFLO benchmark solution 

of wlfo. 

When applied to the cable cost considering the WFLO procedure result, we find an optimum of 

two added Steiner points, reducing route length from 10,540.7 m to 10,459.5 m. This results in a 

cable cost of 3,137,838 € (156,892 € yearly), a reduction of 1,223 €. Figure 10 shows the respective 

MST (red) and Steiner tree (blue). 
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Figure 10 Steiner tree optimization after cable length WFLO optimization. 

4.2 Gaussian Wake Model 

For our example, we use an incoming wind speed of 𝑢Ref = 8 m/s. We assume that this measured 

wind speed is given at a reference height of 𝑧Ref = 10 m, the hub height is 𝑧𝐻 = 100 m, and the 

terrain roughness length is 𝑧0 = 0.1 m. Figure 11 shows the resulting Gaussian wind speed heat 

map and contour curves. The figure represents the “view” down the 𝑥 axis, i.e., it depicts the wind 

speeds on the 𝑦 − 𝑧 plane at 𝑥 = 0. The maximum height depicted is 𝑧 = 180 m. The lower row 

exhibits wind speeds close to zero, representing heights only a little more than 𝑧0. 

 

Figure 11 Gaussian wake model, view down the x-axis (turbine in the back). 

Figure 12 shows a view from the side, i.e., down the 𝑦 axis (𝑥 − 𝑧 plane), where the turbine is 

located on the left. Note that 𝑦 = 0 means that the 𝑥 − 𝑧 plane is perpendicular to the tower. 

Figure 13, finally, presents a view from the top towards the ground, i.e., down the 𝑧 axis (𝑥 − 𝑧 

plane). Again, the turbine is on the left. The selected height is 𝑧𝐻 = 100 m. 
  



JEPT 2024; 6(1), doi:10.21926/jept.2401008 
 

Page 15/20 

 

Figure 12 Gaussian wake model, view down the y-axis (from the side at the scene, 

turbine on the left). 

 

Figure 13 Gaussian wake model, view down the z-axis (from the top towards the bottom, 

turbine on the left). 

It should be noted that while function QuickGauss3D() computes wind speed exactly at the 

specified location, GaussWS() looks up wind speed at the available location closest to the one 

specified. Therefore, both functions may return slightly different values. For example, GaussWS 

(Gauss, 100, 1,100) returns a value of 7.03462, while QuickGauss3D (100, 1,100) returns 7.035851. 

However, a tensor resolution of 500 × 1,000 × 1,000 for GenerateGauss() (see section 2.2) will 

ensure that the deviation between both functions is never greater than 0.1 m/s. 

4.3 Hub Heights Optimization 

As height optimization adds another dimension to the already heavy load computations in WFLO, 

the optimizer consumes much computation time. For the results presented here, we have an Intel 

Core i7, 3.4 GHz, compute for 1,045 hours, 39 minutes, and 38 seconds (or almost 44 days). 

Figure 14 presents the turbine arrangement in the usual top view, while Figure 15 shows the 

resulting heights. Interestingly, there seem to be two “regimes” of optimal heights, as nine turbines 

are set to 137 m, and six turbines attain heights of 126 m. To rule out a coincidence, four additional 

computation runs (again consuming between 40 and 43 days of computation time but computed 

simultaneously due to multiprocessing capabilities) were performed, resulting in virtually the same 

setup. The result, therefore, seems to be robust. A first conclusion might be that turbine heights are 

adjusted to allow turbines to evade the wake influences. However, at a second glance, that is not 

the case. As Figure 16 shows the resulting wake cones, almost no turbines are influenced by wake. 

Turbine 20 is (scarcely and only partially) struck by the wake turbines 1, 8, and 17 shed. Turbine 5 is 

in the wake of turbine 8 (full wake), see Figure 17, where P1 is turbine 8, P2 is turbine 5, the distance 

between A’ and B’ denotes the rotor diameter of turbine 5, CC marks the cone center of the wake, 

and A, B, C, D are the corner points of the wake cone. As these turbines are 4,475.3 meters apart, 

the Jensen model computes a wake diameter of 354.8 meters at the position of turbine 5. Turbine 

8, the upwind turbine, is optimized to a hub height of 137.3 m, while turbine 5 (downwind) is set to 

125.1 m. The total height difference, however, is also dependent on the terrain elevation. At the 

location of turbine 8, the elevation is 218 m; at turbine 5, it is 104 m. Therefore, the overall hub 

height of turbine 8 is 137 + 218 = 355 m above sea level, while for turbine 5, it is 229 m, so the 
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difference is 126 m. From that, it can be seen that turbine 5 could hardly evade the wake of turbine 

8 by adjusting its height. The wake cone shed by turbine 8 encompasses the rotor disc of turbine 5 

and goes up beyond 500 meters, see Figure 18. Decreasing the hub height of turbine 5 to the lower 

bound (68 meters) could have at least positioned large fractions of the rotor disc outside the cone. 

However, lower wind speeds at lower heights would have been the downside (contrary to lower 

installation cost). However, as it is more than 4 km downwind, the Jensen penalty is only minor (less 

than one percent wind speed deduction); evading that weak wake would not be reasonable. 

 

Figure 14 Optimal turbine arrangement, considering hub heights. 

 

Figure 15 Optimal hub heights of turbines. 
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Figure 16 Wake penalizers for hub heights optimization result. Light arrows represent 

the wind direction field, while dark arrows depict wind directions plus/minus one 

standard deviation. 

 

Figure 17 Wake situation between turbine 8 (upwind) and turbine 5 (downwind), top 

view. 

 

Figure 18 Wake situation between turbine 8 (upwind) and turbine 5 (downwind), side 

view. 
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Essentially, evading the wake by dodging below or above is not possible in many cases due to 

large wake cones, and also, it is not worth accepting the disadvantages. Still, considering hub heights 

for the WFLO procedure is important, as the robust results of different hub heights suggest. Heights 

around 126 m and 137 m may represent favorable trade-offs between installation cost and energy 

harvesting potential. Applying the hub heights as suggested by the result yields a yearly profit (i.e., 

after taking increased installation cost into account) of 11,616,543 € while ignoring the heights and 

using all 100 m hub heights returns only 11,491,234 €, i.e., 125,309 € less. 

5. Conclusion 

This article deals with three WFLO-related topics: cable cost, hub heights, and Gaussian-Jensen 

wake. Taking cable cost into account during the WFLO procedure leads to significantly different 

turbine setups than attained if the wake situation is essentially the only constraint in the 

optimization. The same holds when hub heights are considered. These results show that optimizing 

AEP or wind farm efficiency may only miss out on additional economic improvement of the solutions 

found if cable cost or hub heights are ignored. 

Providing a Gaussian-Jensen wake model is not new to the literature. However, fostering its 

usage by implementing software to use the model may help researchers to use gradient-based 

optimizers in the future, which is virtually impossible using the non-differentiable Jensen model. 

Our implementation is fast and, while not as accurate as more realistic computational fluid dynamic 

models (CFD), will be sufficient to replace the Jensen model successively. 

As a general insight, the article shows that the WFLO problem can (and should) be extended to 

incorporate more relevant aspects in the real world than just placing turbines on a two-dimensional 

plane. Varying wind regimes across the farm area, varying terrain heights, wiring costs, and more 

are subject to vivid research for a reason. 

Our research presented here leaves room for improvement. For example, our assumption of 

underground cable cost of 300 €/m is crude and can be refined. Provided additional soil condition 

information, more sophisticated models could even be used to develop detailed cost-optimized 

cable routes. The hub heights optimizer could be generalized by enabling the procedure to use 

different types of turbines. Larger turbines are more expensive but can access better wind 

conditions. Higher towers can also carry larger turbines with greater rotor-swept areas due to longer 

rotor blades. This also demands larger and more expensive generators and transformers but is 

usually worth the additional cost. 
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