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Abstract 

This initiative aims to enhance the efficiency of utility demand response (DR) operations by 

coordinating and integrating behind-the-meter (BTM) photovoltaic systems (PV) and energy 

storage (ES) using innovative machine learning software applications embedded in a 

distributed control architecture. The project is in the process of creating distributed energy 

resource (DER) learning agents and optimization engine within a hierarchical and layered 

distributed control architecture (DCA). These components work together to leverage 

aggregated DERs, providing more adaptable and swiftly responsive grid services tailored to a 

customized grid services set (GSS). They exchange information to facilitate the analysis, 

optimization, and dispatch of DERs for grid services. This paper outlines the DER Aggregation 

Model and the functional requirements of the DER Aggregation Engine, which delineates how 

participating DER assets will be grouped or aggregated for involvement in each GSS grid 

service. Based upon, we develop optimized command sets—establishing forecasted energy 

prices and substation level loads—utilizing DER excess capacity targeting five grid services: 

peak load management, energy arbitrage, frequency regulation, voltage support, and phase 

balance. In the end, sample customers’ bills with and without grid services will be compared 

for benchmarking associated tariffs. 
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1. Introduction 

This initiative aims to enhance the efficiency of utility demand response (DR) operations by 

coordinating and integrating behind-the-meter (BTM) photovoltaic systems (PV) and energy storage 

(ES) using innovative machine learning software applications embedded in a distributed control 

architecture (DCA). Recent research discusses that a reduction in the emissions of greenhouse gases 

is feasible with a widespread adoption of distributed energy resources (DER) that can be utilized as 

virtual power plant (VPP), in oppose to the devastating impacts of the coal and gas power plants 

feeding on fossil fuels to the environment [1]. There are several attempts to design a DER system 

that can efficiently connect to the grid decreasing the possibility of grid failure in an unexpected 

series of events [2-5].  

The totality of project—where this article is a subset of it—entered the trial phase by creating 

DER learning agents, Energy Storage-as-a-Service (ESaaS)—for customers who do not possess 

energy storage, Co-optimization, and Blockchain components—using for auditing purposes in case 

of a financial dispute between a utility and customers—, within a hierarchical and layered 

distributed control architecture (DCA). The DCA is comprised of two primary components – the 

Amazon Web Services (AWS) cloud and the Premise. All DERs within the premise are coordinated 

through the Premise Gateway on the local area network. The Premise Gateway collects, stores, and 

transmits DER snapshot and aggregation values. Snapshots are configuration values that do not 

change over time, while aggregation values are aggregate of telemetry data points that constantly 

update over time, which is not within the scope of this article. These components work together to 

leverage aggregated DERs, providing more adaptable and swiftly responsive grid services tailored 

to a customized grid services set (GSS). They exchange information to facilitate the analysis, 

optimization, and dispatch of DERs for grid services. This paper outlines the DER Aggregation Model 

and the functional requirements of the DER Aggregation Engine, which delineates how participating 

DER assets will be grouped or aggregated for involvement in each grid service. Utilizing DER 

aggregation models is well-known in the industry, where pioneers investigate its functionality, 

specifically in the demand response concept [6-9]. 

This paper briefly overviews the steps utilized in this project to feed in required information for 

the optimization. Then, it defines how co-optimized command sets is disaggregated and specifies 

the algorithms that is translated into functional software components. Co-optimization processes 

integrated for the distributed energy resources are well-documented in the literature [10-14]. We 

adopted such approaches for this project, created a comprehensive coordination which leads to 

lowering PV solar customers bill, as well as enhancing the grid reliability. The Co-optimization engine 

relies on several day-ahead forecasts, each associated with a level of uncertainty. The optimizer 

then calculates the setpoints of the DERs, optimizing each grid service function over a 24-hour time 

horizon to maximize revenue and/or meet distribution reliability requirements.  
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2. Learning Agent Modeling 

2.1 DER Learning Agent Modeling 

The DER Agents participate in two stages: First, they are responsible for communicating the 

current and short-term availability forecasts of the specific DER types to the Premise Agent and to 

the DER Aggregation Engine. Specifically, the following DER Agent types were developed: The 

customer BTM-ES (behind the meter energy storage) or Virtual ESaaS (energy storage as a service) 

Block communicates current and forecasted capacity states given control mode expectations, 

charge/discharge rates, roundtrip efficiency, and battery degradation; The PV system 

communicates near real-time to day-ahead real and reactive power generation forecasts; The 

thermostatically controlled loads, namely smart thermostat for air conditioning control (T-Stat) and 

(Grid Interactive Water Heater (GIWH), communicate their forecasted demand as well as thermal 

storage availability and load shed availability. 

Once the Premise Learning Agent sets an optimal schedule for these DER assets that minimizes 

the customer’s electricity bill, the DER Learning Agents enter a second stage where they will 

communicate excess capacity for participation in grid services. 

2.2 Premise Learning Agent Modeling 

The Premise Agent forecasts the non-controllable portion of the premise load with the total 

controllable loads modelled into it. It combines the forecasted net load with the energy and demand 

prices derived from the assigned electric utility rate to determine the optimal way to utilize 

associated DER Learning Agent forecasts so that the customer’s electric bill is minimized under 

various electricity rate options, including Time-of-Use (TOU), Daily Demand Pricing (DDP), and 

Critical Peal Price (CPP), and combinations thereof—such as the TOU + CPP + DDP rate. Dynamic 

pricing is widely regarded as the most efficient rate, where integrating both customer preferences 

and market dynamics [15, 16]. The main optimization in this project is referred to as customer bill 

management (CBM), where attempts to reduce customers bill under different rate scenarios. In an 

iterative fashion, after the CBM optimization is performed, the Premise Agent issues control and set 

point schedules to the DER Learning Agents for the next 24-hour period. This allows the DER 

Learning agents to forecast the excess capacity of associated DERs that is available for participation 

in each of the grid services. 

Simultaneously, the forecasted bill reduction is weighted against the revenue generated from 

participating in grid services, and a combination of the services through co-optimization. If a need 

arises for DERs to participate in a particular grid service (such as avoiding equipment overload), then 

the utility takes control of the DER assets, and the Premise Agent calculates the cost impact to the 

customer of such override for reimbursement to the customer during financial settlement processes. 

Finally, the Premise Agent must communicate to the Blockchain-enabled financial settlement to 

process the measured grid services participation parameters. This optimized schedule provides a 

baseline that can be adjusted based on the output of the co-optimizer and the need to activate one 

of the grid services. Consequently, the associated minimum bill (MinBill) then is used to determine 

the compensation to the customer in using his DERs for the utility’s purposes. 
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2.2.1 Premise Non-Controllable Load Forecast  

The historical data (at 15-min interval) of whole house power consumption is collected on a 

selected premise to investigate the accuracy of Prophet solver—which is the base forecast model 

in this project—on forecasting day-ahead energy demand. The model is trained with data from 

January 2018 to July 2021. Best performance is obtained by parsing out that data into seasonal 

blocks and adding ambient temperature as a regressor. A sample of a day-ahead 15-min forecast is 

shown in Figure 1, along with the actual load. Note the uncertainty interval (i.e., the random 

component of the load) is rather significant – a characteristic of sporadic changes in individual 

customer load. Further simulations is conducted on non-controllable loads of a premise using the 

same forecast tool. These loads include lighting, kitchen appliances, washer/dryer, etc. Figure 2 

shows a sample where the sampling time interval of the data was 5-minutes. As one can expect, the 

sporadic changes and associated uncertainty interval are more dramatic in this case. 

 

Figure 1 Day-ahead forecast and actual whole house load (15-min interval). 

 

Figure 2 Day-ahead forecast of non-controllable loads (5-min interval). 
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2.2.2 AI Agent Interaction 

Prior to deployment, the DER Agents collect data about the operating status and power 

consumption of the air conditioning unit and electric water heaters, PV power generation and 

energy storage charge/discharge cycles. Then they perform self-learning which consists of system 

identification that determines the values of the coefficients associated with their corresponding 

mathematical models described at the end of this report, in addition to demand forecasting for the 

total controllable loads. These models, which are necessary to predict the behavior of controllable 

loads (shown in Figure 2) following a control command, in turn are used in the optimization process. 

Simultaneously, the Premise Learning Agent collects data of the premise power consumption 

including non-controllable loads and performs self-learning for the purpose of short-term load 

forecasting.  

The Premise Agent optimization solver then uses the appliance models, day-ahead forecasted 

usage and weather forecast to generate optimal solutions of individual DERs that minimize the 

customer bill (by altering the temperature set points of the T-Stats and GIWH, charging/discharging 

the ES, or a combination thereof to maximize the load reduction during peak price periods). Excess 

capacity of each DER then is determined from their availability (in terms of power and energy) after 

the above optimization take place. Finally, the estimate of the remaining available DER is provided 

for grid services. The Figure 3 summarizes the sequence of operation among DER and Premise 

Learning Agents. 

 

Figure 3 Operation among DERs and Premise Agent. 

3. Aggregation Model 

Development efforts continued to productionize the grid service set and AI agent code as well as 

build out databases, servers and communication links between the various cloud components. All 

the cloud components have been deployed and commands/schedules are being sent down to the 

three test gateways.  
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The AI Agent pipeline that is responsible for Load, PV, nodal and wholesale price forecasts has 

been deployed and is actively running. The steps are as follows: 

● Historical meter and substation telemetry data for 1+ years gets uploaded to the utility server. 

● Development Server picks up these files, runs the FB Prophet training protocol and saves the 

trained models in the Model Storage bucket. 

● Lambda function running CBM picks up these trained models and inferences them to run day 

- ahead forecasting, results of which are saved in PostgreSQL production database. 

For wholesale price forecast, the OASIS API is used to pull historical data for training directly onto 

Development Server. 

The T-Stat and GIWH have been built and deployed. The steps are as follows: 

● The e-Gauge API is used to pull historic run-time data for each customer onto development 

server. 

● Thermostat (Ecobee) setpoints are collected from customer gateways and stored in 

PostgreSQL production database. 

● Historic setpoints and run time data points combined with spec sheets (uploaded via s3) are 

used to train models whose parameters are stored in PostgreSQL production database. 

● Setpoints collected via the customer gateways are also used to determine personalized 

comfort thresholds for offsets. 

● The T-Stat and GIWH agents then determine the degree offsets and duration for a curtail 

event and corresponding kWh setback and snapback values and saves them in PostgreSQL 

production database. 

The grid service set has also been deployed and is actively running. For the co-optimization and 

CBM the steps are as follows: 

● The CBM Lambda function takes as input the forecasts calculated by the AI agents along with 

real time telemetry readings from the gateways, weather forecast, current TOU rates and T-

Stat and GIWH agent output, runs a 24-hr ahead cost based optimization and saves the 

schedule in the PostgreSQL production database. 

● The co-optimization Lambda function then runs a similar optimization to the CBM, using the 

wholesale price forecasts instead of TOU rates and including phase balancing, peak load 

management and energy arbitrage constraints and saves its schedule in the PostgreSQL 

production database. 

● The output from the co-optimization is then formatted into gateway and ESaaS commands by 

the utility Secured production server and sent via MQTT to the DERs through the gateways 

and via secure file transfer protocol (SFTP) to the ESaaS through Energy Management System 

(EMS). 

The Voltage Support (VS) and Frequency Regulation (FR) grid services have separate process 

flows in Amazon Web Service (AWS) and they are as follows: 

● FR – AGC signal comes in from Energy Management System (EMS) and triggers secondary FR 

Lambda function. 

○ VS – Local voltage disturbance (over or under voltage) as reported by telemetry readings 

from gateways triggers centralized (Level-2) VS Lambda function. 

● FR – Optimization determines charge/discharge commands to send to specific resources (BTM 

batteries/ESaaS). 



JEPT 2024; 6(3), doi:10.21926/jept.2403017 
 

Page 7/16 

○ VS – Optimization determines which resources (inverters) to switch from autonomous 

mode to direct reactive power control mode and direct Q values to send. 

● commands are formatted and send down in real time via gateways for customer DERs and to 

EMS for the ESaaS. 

● The processes for both VS and FR are repeated at intervals equal to the frequency of telemetry 

data readings from the gateways and substation until the AGC signal has been met for FR and 

until the voltage disturbance has been solved for VS. 

● The Managed Blockchain service has also been deployed and is ready to receive the four 

determined bills from the utility Secured production server. These bills will be calculated daily 

using billing determinants stored in PostgreSQL production database and communicated via 

REST API calls through AWS API Gateway to the Managed Blockchain service. 

● From here billing credits is sent to utility billing department. 

Numerous insights have been gleaned from the intricate process of developing the co-

optimization engine. Primarily, the amalgamation of frequency regulation, energy arbitrage, and 

peak load management grid services into a singular objective function presented greater 

complexities than initially envisaged. Consequently, a pragmatic resolution emerged, wherein the 

available capacity was bifurcated into reserve and excess through a predetermined percentage, and 

distinct optimizations were executed for each component. Although this current bifurcation 

approach is currently adopted due to its streamlined implementation, the possibility of transitioning 

to a unified, optimized objective function is contemplated pending a thorough evaluation during 

the preliminary field-testing phase. 

An additional discernment pertains to the substantial impact of wholesale price forecast 

accuracy on the DER schedule generated by the co-optimization engine. To mitigate the emergence 

of highly variable and unpredictable daily schedules, characterized by an excessive number of 

charge/discharge cycles for the battery, a strategic reliance on the forecast smoothing feature of FB 

Prophet is employed. Specifically, by leveraging the "daily seasonality" inherent in wholesale price 

movements as the $/kWh utility costs in the co-optimization process, we ensure the preservation 

of stability within the DER schedules. This meticulous consideration of forecast accuracy and the 

judicious utilization of FB Prophet's capabilities underscore our commitment to refining and 

optimizing the performance of the co-optimization engine in real-world applications. Figure 4 shows 

the sample price prediction results utilizing the FB Prophet model, where y-axis represents energy 

prices $ per MWh. 
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Figure 4 FB Prophet daily seasonality output (in winter and summer) of wholesale price 

movements. 

3.1 Pre-Steps 

Three scripts have been coded and deployed to the AWS to complete the aggregation model 

which is needed to run the co-optimization. 

● Colleting real time energy prices from CAISO were automated and append every day to not 

only calculate the customers’ credit and wholesale rates, but also, forecasting a day-ahead 

price for the MinBill and Co-optimization algorithms.  

● Colleting weather projection data was automated which gathered three major factors needed 

for Premise/PV/Price forecasts: Temperature, humidity, and sky coverage. 

● Collecting Phase/Feeder/transformer level data and append it weekly to calibrate grid side 

load forecast. 

● Solar irradiance data was collected on daily bases from NREL website and pass to the AWS to 

use for the solar generation forecast for the customers. 

● All these four datasets are automated from NV Energy platform, send to the secured file 

transfer protocol (SFTP), and from their automated to be sent to the AWS cloud. 

3.2 Data Requirements for Aggregation 

The followings are the necessary data points to feed into the aggregation model: 

● CAISO real-time energy market price forecasts under uncertainty: LMP-Real time for the 

ELAP_NVD node. 

● Day-ahead nodal load forecasts at the following tiers: Substation (Beltway and Village), 

feeders, and phase. 
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● Day-ahead weather forecast: temperature, humidity, cloud coverage which are essential for 

energy price forecasts, solar generation predictions, and nodal load forecasts. 

● NV Energy system marginal cost and avoided costs at the transmission and distribution levels. 

● Premises preferences on degree changes and ranges throughout the whole year. 

● Premises’ loads and PV generation, BESS kW/kWh, GIWH set points, schedule and used power, 

# T-Stat per premise, set points, schedule, and used power. 

3.3 Aggregation Steps  

The followings are the required steps to aggregate the data, and make it ready for the Co-

optimization process: 

Calculate the day ahead reserve capacity for foundational grid services (peak load management 

+ energy arbitrage). 

● BTM ES/ESaaS – Fixed percentage of battery ramp up/down capacity e.g.:  

○ [0.05 ×  kWh capacity, 0.95 ×  kWh capacity] 

● T-Stat/GIWH – kWh corresponding to maximum setpoint deviations within customer’s 

comfort levels (as determined by studying their collected historical setpoints). 

Calculate the day ahead excess capacity for ancillary grid services (frequency regulation). 

● BTM ES/ESaaS – Excess battery ramp up/down capacity e.g.: 

○ [0, 0.05 ×  kWh capacity] and [0.95 ×  kWh capacity, kWh capacity] 

● T-Stat/GIWH – kWh corresponding to setpoint deviations exceeding customer’s comfort levels 

by minimal predetermined threshold. 

The reserve capacity is fed into the co-optimization engine per time period/Premise/DER e.g., 4-

5 PM, BTM ES [−X1 kWh, Y1 kWh] along with the forecasted load/PV generation and wholesale 

price/nodal load forecasts. The co-optimization engine then determines the optimal 24 hour ahead 

DER schedules using grid cost minimization under grid reliability constraints (phase balancing/rated 

capacity at nodal aggregation points). 

Then overall excess capacity is offered to the ancillary market as the potential resources for the 

price. If such recourse has been called, deploy the command, use the excess capacity, and credit the 

customers’ bill. The frequency regulation optimization engine determines the quantity of each 

customer DER’s excess capacity that gets called to the ancillary market to meet its demand. If no 

such event gets called the excess capacity goes unused. 

3.4 Data Processing 

The Pre-Optimization Data Processing is responsible for preparing data transmitted via DER 

Gateway interfaces. It ensures data integrity and relevance through the following functions: 

● Data Validation: Identifies and corrects incomplete or erroneous data to maintain accuracy. 

● Date Sorting: Organizes DER availability forecasts by DER Type, Grid Service, and Managed 

Aggregation Points to streamline optimization processes. 

● Reliability Adjustments: Works with the Reliability Management service to apply reliability 

discount factors, enhancing data reliability for accurate calculations and optimizations. 
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4. Matrix Transformation: Converts Time Series Availability Forecast Vectors into Matrices to 

Meet the Specific Requirements of Grid Service Optimization Engines. Co-Optimization Algorithm 

and Modeling  

4.1 Process Flow for the Co-Optimization Engine 

Figure 5 is the process flow for the co-optimization algorithm. The Python code written for the 

optimization is available upon request: 

 

Figure 5 Co-Optimization Procedure Diagram. 

4.2 Algorithm’ Steps for the Co-Optimization  

● Calculate the day-ahead hourly reserve and excess capacity per DER per premise (ramp up or 

down, ultimately it should be a summation of all the DERs at each premise, e.g., 4-5 PM, 

[−X1 kWh, Y1 kWh]. 
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● Allocate reserve capacity to foundational grid services (peak load management & energy 

arbitrage) and excess capacity to ancillary grid services (frequency regulation). 

4.2.1 Reserve Capacity 

● Define grid reliability constraints (phase balancing and transformer/substation rated capacity) 

using forecasted loads at nodal aggregation points E.g. phase A – Phase B < 150 Amps, 

Substation load < 50 MW. 

● Run cost reduction optimization using available DER reserve capacity and forecasted LMP-

Real time prices for the ELAP_NVD node to output disaggregated day ahead DER schedules 

(including ESaaS schedule). 

● Run MinBill optimization for each customer using TOU-CPP-DDP rates and forecasted loads 

(taking into account controllable load curtailment) and solar generation. 

4.2.2 Excess Capacity 

● Sum up all the excess hour-capacity for all the premises enrolled in the program, at three 

different levels: phase, feeder, substation (bank). 

● Package the overall capacity and offer to the ancillary market as the potential resources for 

the price. 

● If such recourse has been called, deploy the command, use the excess capacity, and credit the 

customers’ bill. 

4.2.3 Billing 

● Calculate customer bill using co-optimization schedule with TOU rates where proceeds from 

energy arbitrage (+kWh grid to battery/-kWh battery to grid) split between utility & customer 

at predefined proportion and called grid service capacity (E.g. frequency regulation) 

compensated at predefined rate. 

● If the difference remains between final consolidated bill and MinBill, compensate customer 

this difference. 

5. Test Cases and Results 

The core optimization code was successfully developed, by adapting the CBM logic to a utility 

side cost reduction format and deployed in an AWS Lambda function where it has been running 

once every 24 hours and saving the day ahead schedule for all DERs for 3 sample premises in a 

PostgreSQL database.  

To ensure the robustness of the co-optimization engine, it has been split into the following 

components/test cases that have been validated through daily runs in the cloud over a 10-day 

period from Dec 17-27, 2023. Success is defined as each component running without errors for all 

10 days and as intended through manual spot checks of the outputs. 

● Day ahead reserve and excess capacity forecasts for DERs calculated for all sample premises 

– using imported aggregated data. 

● Day ahead weather and market price forecasts calculated. 

● Day ahead load forecast and MinBill calculated for all sample premises. 
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● Phase balancing and rated capacity constraints influencing co-optimization engine output. 

● Co-optimization engine saves DER schedules and converts them to commands that are sent 

down to each premise gateway and DER through dedicated MQTT topics. 

5.1 Co-optimization Result 

For the ESaaS, a single daily run was performed, in which the battery was treated as a separate 

premise. The co-optimizer successfully output an optimized day ahead charge/discharge schedule 

and an automated system was triggered that e-mailed the schedule to the battery operator, as it is 

shown in Figure 6, where y-axis shows kW charge/discharge and whole sale market prices. 

 

Figure 6 Charge/discharge schedule output from co-optimizer for sample day of July 1, 

2022. 

Additionally, in order to effectively shift load while minimizing customer compensation, 

additional test cases were defined in which simulated utility costs were analyzed and simulated 

customer bills outputted from the co-optimization and MinBill engines were compared. The 

purpose of these test cases was to determine that wholesale market costs were effectively being 

reduced using customer load shifting while minimizing the customer compensation. To this end, the 

co-optimizer and MinBill algorithms were retrospectively run for a 2-month summer period in which 

TOU-CPP-DDP rates apply for a sample premise whose historic loads and PV generations were 

known. Additionally, a 5 kW/13.5 kWh BTM battery was included in the back-test in order to 

simulate the effects of load shifting. The following test cases and their success criteria have been 

validated and tables with simulation results have been provided for reference (Table 1 & Table 2). 

● % difference between MinBill and Co-Opt bill less than 10%. 

● Wholesale market costs (w load shifting-w/o load shifting) > 0. 

Table 1 Customer bills for a selected for the summer months of 2022. 

Date Co-optimization Bill MinBill % Difference (MinBill from Co-Opt Bill) 

Jul-22 $358.7 $324.4 -10.6% 

Aug-22 $296.4 $278.4 -6.4% 

Total $655.1 $602.8 -8.7% 
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Table 2 Utility wholesale market costs for a selected premise for the summer months of 

2022. 

Date Without Load Shifting With Load Shifting 
% Difference (with from 

without Load Shifting) 

Jul-22 $180.3 $159.9 -12.8% 

Aug-22 $197.9 $153.6 -28.8% 

Total $378.2 $313.5 -20.7% 

5.2 Customer Bill Management 

The Customer Bill Management algorithm takes as input, for each customer, the day ahead load 

(both non-controllable and controllable loads) and solar generation forecasts, appliance models and 

rate tariffs and outputs an optimal 15-min day ahead DER schedule. As an illustration, the optimal 

charge/discharge schedule for a BTM ES for customer under TOU-CPP-DDP for the day of July 1, 

2022, is presented in Figure 7. Herein, the battery capacity is 13.5 kWh with 5 kW charging and 

discharging rates. It must be noted that we used the specifications and parameters of the available 

battery in the trial; however, any battery can be used in such a process, only the logics of the 

optimization should be changed accordingly. In this scenario, the battery is only allowed to charge 

from solar and discharge into the premise. The mathematical model in this context is a cost-based 

function that represents the customer’s daily electricity costs based on their 15-min kWh 

consumption and rate structure. The total cost is determined as follows: 

𝑻𝒐𝒕𝒂𝒍 𝑪𝒐𝒔𝒕 = BassRate + 1.05 × (

Rateon peak × Importon peak

+Rateoff peak × Importoff peak

+Ratecritical peak × Importcritical peak

)

+(DemandCharge × DailyMaxLoad
) + (MiscCharges × TotalImport)

−(Solar_Export_Credit + Battery_Export_Credit) (Eq 1)

 

where: 

Import = battery charge from grid + native load (Eq 2) 

State of Charge = battery charge from solar + battery charge from grid

−battery discharge to premise (Eq 3)
 

0 < State of Charge < 13.5 kWh (Eq 4) 

0 < battery charge from solar + battery charge from grid

< min(13.5 − State of Charge, 5) kW (Eq 5)
 

0 < battery discharge to premise < min (State of Charge, 5) kW (Eq 6) 

Solar to premise + native load + battery discharge to premise = demand (forecast) (Eq 7) 

Solar to premise + solar to grid + battery charge from solar = solar generation (forecast)(Eq 8) 
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Figure 7 Sample of BTM battery charging and discharging patterns for sample day of July 

1, 2022. 

This function is then minimized using Google OR-Tools’ GLOP optimizer to determine the kWh 

imported and exported every 15-min from the BTM ES in order to minimize the customer’s bill. We 

see in Figure 7 that this is achieved by first diverting all solar generation to the battery, in the 

morning off-peak hours, until it reaches maximum charge. Then, in the afternoon on-peak hours, 

dynamically discharging the battery to both shift load as well as minimize the demand charge, most 

effectively achieved through an accurate load forecast. Y-axis shows charging/discharging rate in 

kW. 

Additionally, in this project period, simulations were run using historical load and PV data for 

three example premises, under a flat rate, TOU-CPP-DDP and real time rates to determine the 

feasibility of participating in the program and the yearly savings associated with switching from a 

flat to a variable rate. Yearly optimizations were also run using the Google OR-Tools python package 

to determine the customer MinBill and optimal charge/discharge schedules using a simulated 13.5 

kWh Tesla Powerwall battery to shift load away from price peaks. 

The simulations/optimizations were run for the entirety of the year 2022 under net metering 

tariffs (netted monthly) for flat and TOU-CPP-DDP rates. Accurate historical prices, critical peak 

events and daily demand charges were all provided as inputs into the optimization algorithm. A 

monthly battery financing fee was also included in the optimization cost function. The results for a 

selected customer are presented in Table 3. 

Table 3 Selected customer’s bill under different scenarios using 2022 rates and prices. 

Pricing Tariff Annual Bill (no battery) Annual Bill (with Tesla 13.5 kWh) 

Flat rate (net metering) $683.64 - 

TOU_CPP_DDP (net metering) $731.76 $2,246.53  

Imbalance market pricing $417.39 $(1,980.93) 

CAISO day-ahead pricing $815.47  $98.17 

The illustration presented above delineates a customer bill subjected to various rates, including 

the flat rate, TOU-CPP-DDP, and distinct price structures such as CAISO LMP price and Imbalance 

market price, both with and without the integration of a battery. In the presence of a behind the 
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meter battery, the customer gains the ability to capitalize on energy arbitrage opportunities within 

the market. It is imperative to acknowledge that the depicted figures are derived under the 

assumption of perfect price realization, a scenario unattainable when forecasting loads or prices. 

Precisely predicting the future instances when prices reach their nadir (facilitating purchases, 

possibly at negative prices) or zenith (allowing for sales) is inherently elusive. Consequently, the 

figure serves to elucidate the upper bound potential associated with the utilization of a battery by 

customers.  

6. Conclusion 

The analysis of our forecasting tools and conditions provides several key insights. Under clear 

skies, only one forecasting tool matched the theoretical forecast, with errors below 6%. In contrast, 

forecasts under partly cloudy or cloudy conditions had larger errors, often exceeding 20%, especially 

during morning and afternoon hours. Updated forecasts improved performance but only within the 

first two hours after the update. Without incorporating local measurements with finer time 

resolutions, such as sky imagery or solar irradiance, significant forecasting errors are expected to 

persist. Back-tested optimization indicates that customer bills could increase with monthly battery 

financing costs unless mitigated by HVAC/GIWH curtailing. Appliance models require granular data, 

including historic set points and kWh usage, necessitating customers to have sub-meters and smart 

thermostats. However, not all customers have this equipment, requiring simplified models until 

sufficient data is collected. Accurate estimation of appliance-specific parameters depends on data 

accuracy and the chosen period, even with sub-meter data. 

The development of the DER aggregation engine has yielded several lessons. Dynamic 

aggregation with optimized disaggregation is easier than summative aggregation and fair utilization 

disaggregation. Tests show that the optimizer's performance is minimally impacted despite limits 

on concurrent DERs. Grid reliability constraints at managed aggregation points are expected to 

remain within operational parameters, easing concerns about constraint breaches. To improve 

smart thermostat availability forecasts, additional telemetry values, such as mode of operation and 

distinct heating/cooling setpoints, have been identified. These developments highlight optimization 

strategies, computational efficiency, and considerations for grid reliability constraints in the DER 

aggregation engine's development. 
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