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Abstract 

Performance degradation, including system deterioration, corrosion, and energy loss in solar 

PV systems, can be caused by environmental conditions such as high humidity, frequent 

rainfall, and temperature swings in tropical nations. Over the years, photovoltaic energy has 

been successfully developed to have low production costs and high efficiency. It has been the 

main reason that solar energy is one of the fastest-growing renewable energies in the world, 

with a generation of 821 TWh of electricity since 2021, representing 23% incremental from 

the previous record. Even though photovoltaic technology is the preferred renewable energy 

due to the abundant availability of solar energy, one of its challenges is the significant 

reduction in the performance, power output, and efficiency caused by its installation directly 

into the open atmosphere and to the environmental phenomena translating into potentially 

avoidable economic losses. Various factors related to energy degradation are related to 

ambient temperature, dust particles, water droplets, shading, wind speed, humidity, and 

other climate parameters, particularly in tropical climate conditions. It quantifies the 

relationship of the least and most significant measurements using various techniques. These 

include computation of correlation coefficients, linear regression methods, and statistical 
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evaluations. This study applies statistical methods such as the Pearson, Kendall, and Spearman 

correlation coefficients, ARIMA forecasting models, and regression analysis to assess how 

tropical environmental factors affect solar energy yield. Historical energy data from a large-

scale solar plant located in Malaysia is adopted. The selected performance parameters are 

energy yield and plane of irradiance energy generated by the photovoltaic panels. The results 

found that humidity and temperature impact PV system performance the most. This work is 

significant, especially in countries with tropical climates. It provides a reference model with 

similar weather and energy data that plans to implement large-scale solar power projects as 

a Nationally Determined Contribution (NDC). Based on the research’s findings, mitigating 

strategies like regular panel cleaning, enhanced monitoring systems, and predictive 

maintenance plans are recommended to reduce the effects of these climate-induced losses. 

This work aligns with UN-SDG on clean energy and contributes towards the national net-zero 

target in meeting the global energy challenge 2030. The beneficiaries include the National 

Energy Commission, regulators, urban planners, solar plant owners’ national utility providers, 

etc. This paper contributes to improving the operational effectiveness of solar PV systems in 

tropical countries, supporting Malaysia’s efforts to attain its energy transition goals. 
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1. Introduction 

According to the International Energy Agency (IEA), solar PV is the second renewable energy that 

grew from the other technologies in the world by 2020, with a generation of 821 TWh that 

represents 23% incremental from the previous record. Solar PV technology has emerged as a leading 

renewable energy source, driven mainly by falling production costs and improvements in panel 

efficiency. These low-carbon technologies could provide more than 30% of the global energy supply 

by 2040 [1]. Malaysia is the second-world manufacturer of PV, according to the data from the 

Malaysian Investment Development Authority (MIDA). It has 250 companies dedicated to the 

photovoltaic energy market. Due to Malaysia’s equatorial location, the country has significant solar 

energy potential due to the abundant solar irradiance it receives throughout the year. However, its 

tropical climate brings operational challenges that can affect the performance of PV systems. The 

government focuses on increasing the contribution with a total of 1350 MW from the large-scale 

plants commissioned from the LSS program between 2022 and 2023. Malaysia has an objective to 

install 9 GW of solar energy by 2050 under the task force of the Ministry of Energy and Natural 

Resources in the country [2]. 

One of the challenges of solar photovoltaic generation is to avoid the degradation of solar energy 

due to its installation directly into the open atmosphere and to the environmental phenomena, 

which significantly reduces performance, power output, and efficiency, translating into potentially 

avoidable economic losses worldwide. Many factors related to the degradation of energy, combined 

with ambient temperature, dust particles, water droplets, shading, wind speed, humidity, and other 

climate parameters, decrease the performance of the panels and affect the energy systems, 
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particularly in tropical climate conditions. Thus, the objective of this study will cover the analysis of 

correlation coefficients, linear regression methods, and statistical evaluations, comparing 

environmental parameters against and the energy yield, performance ratio, and plane of irradiance 

energy generated by the photovoltaic panels. The results indicated by the coefficients, linear 

regression, and statistics show the relationship between the environmental parameters and the 

energy yield, plane of irradiance, and performance ratio, which allows knowing the intensity and 

direction of the relationship between them by interpreting the positive or negative coefficients 

obtained. 

Numerous studies worldwide evaluating the environmental factors affecting the performance of 

the PV showed energy losses of 21.4% to 37.5% due to lack of rain by days or months. Several 

ecological parameters like wind velocity, wind direction, ambient temperature, water drops, and 

dust particles from different seasonal areas influence the power output day and night. On the other 

hand, a lower humidity effect between 69 and 75% increases the power output from the PV panels 

[3]. Many of these studies showed some equations, algorithms, correlation coefficients, and 

statistics resulting in higher or lower correlation, good or bad relationships between parameters, or 

simply matching some variables [4]. This study investigates the impact of these environmental 

factors on PV performance by quantifying their relationships using statistical models and ARIMA 

forecasting. 

1.1 Problem Statement and Aim 

In this study, a large-scale solar photovoltaic plant situated in a tropical rainforest climate, with 

a capacity generation of 49 MWac, has recorded daily environmental parameters measured by 

sensors, and it needs to be compared with the energy yield of the plant to detect the key factors 

that affect the system output. All these factors influence the performance of the photovoltaic panel, 

in some cases reducing the overall efficiency of the system and generating energy losses [5]. 

Another consequence would be the damage or deterioration that these factors cause to the 

photovoltaic panel, accumulation of soiling, dust composition, particle size, etc, affecting the 

module performance [6]. An analysis of the effect of correlation coefficients, linear regression 

methods, and statistical evaluations will be applied to determine the most impactful parameters 

that will help to find the linear relationship, system performance, positive or negative effects on the 

output, direct proportionality relation, and the evaluation of future prediction methods. 

This work aims to compare the data provided, including data acquired for two years measuring 

the power generation and environmental parameters measured by sensors utilizing correlation 

coefficients, linear regression methods, and statistical analysis to select the most impactful 

environmental parameter affecting the performance of the power generation. This work also 

investigates and compares key environmental parameters to determine which one has the most 

and least significant impact on the energy produced by a solar panel. 

A systematic data storage system has been created to deposit historical energy data from large-

scale solar plants. A comparative study was carried out to evaluate the effect of the environmental 

parameters on the energy produced by the plant. This includes different statistical correlations: 

Pearson, Kendall, and Spearman, and linear regressions to determine the trends and relationships. 

The analysis will indicate which relationship will impact the solar performance of the photovoltaic 

array system. This will be followed by the statistical calculation of median, mode, median, standard 
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deviation, skewness, and kurtosis for data evaluation. A prediction method termed autoregressive 

integrated dynamic models (ARIMA) based on seasonal data selection is adopted to analyze the 

behavior using the environmental parameters. The results can be used to estimate power 

generation by understanding the effect of panel cleaning and soiling in the large-scale photovoltaic 

power plant. This contributes to an enhanced solar plant’s control and management. 

1.2 Environmental Factors 

The use of photovoltaic energy is increasing day by day. However, various technical and 

environmental problems make it challenging to obtain optimal power from photovoltaic panels [7]. 

Humidity is one of the environmental factors that degrades solar cell operations. The moisture could 

potentially trigger rust and corrosion on electrical connections. Humidity also deterioarates soiling 

effect to the modules due to dust accumulations. This could be difficult to be removed even in rains 

and can lead to heterogeneous soiling, especially in modules with low inclination angles. Humidity 

can affect the electrical connections causing oxidation or corrosion. In the meantime, humidity 

could degrade the energy generation of the solar panel due to the reflection or diffraction of the 

sunrays by the water molecules. Rain is another factor that reduces the amount of solar radiation 

that reaches the surface of the photovoltaic panel due to cloudiness. On the other side, percipitation 

remove and clean the dirt deposited on the panel. According to [8], soiling is influenced by many 

factors including wind speed and direction, humidity, panel angle of inclination and rainfall 

frequency in a complex manner. Wind can affect the photovoltaic modules continuously, giving rise 

to a static and dynamic load. It presents dynamic load characteristics to what has been standardized. 

Wind is one of the complex factors due to its interaction with other factors. Two parameters are 

involved, they are the wind speed and wind direction. According to [9], the effect of sand and dust 

can be minimized by refining the anti-reflection coating on glass-encapsulated modules. This 

exhibits minimal impact on the open-circuit voltage and fill factor of the solar panel. The 

experiments show the presence of sand and dust caused a reduction in current, leading to lower 

power output. This is due to the etched surface of the solar panel that degrades the ability to 

capture solar energy. In this context, the internal structure of the module remained unaffected.  

Irradiance is the magnitude that describes the incident solar radiation per unit area and is 

measured in W/m² [10]. It is defined as the incident radiant power per unit area for any wavelength 

of the electromagnetic spectrum. It is the magnitude used to quantify the solar radiation that 

reaches the earth's surface. In units of the international system, it is measured in W/m2. It is defined 

as the value of the average energy intensity of an electromagnetic wave at a given point and is 

calculated as the average value of the Poynting vector. In turn, the module of this vector represents 

the instantaneous intensity of electromagnetic energy that flows through a unit area perpendicular 

to the direction of propagation of the electromagnetic wave and whose direction is that of 

propagation. 

𝑰 =
𝑷𝒊𝒏𝒄

𝑨𝒔

(Equation 1) 

Where:  

● I = Irradiance (Wm-2) 

● Pinc = Power (Watts) 
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● As = Area (m2) 

Irradiance varies throughout the day depending on geographic location and local climate. The 

instrument used for its measurement is the pyranometer, which is based on exposing a metal sheet 

with a reflective surface to radiation and next to it, another whose surface is absorbent. The 

absorbent sheet will be hotter than the reflecting sheet and admitting that the temperature 

difference is proportional to the radiation received, by measuring the thermal jump the irradiance 

is therefore determined.  

Direct solar irradiance occurs when solar radiation reaches a specific surface of the Earth in the 

same direction as the sun without changing direction. If the plane is perpendicular to the straight 

line projected from the solar disk to the Earth, it is called direct normal. It is expressed in W/m2. 

Diffuse solar irradiance occurs when solar radiation does not reach the surface in the same direction 

as the sun due to the atmosphere's molecular dispersion of electromagnetic radiation. It is 

anisotropic radiation whose value depends on the celestial area of origin. That is, the properties of 

the atmosphere vary randomly with time. The diffuse component can range from 20% of the global 

on a clear day to 100% on a cloudy day. It is expressed in W/m2. The sum of the direct and diffuse 

components of the radiation is defined as the global reaction. 

The reflected solar irradiance is the designated albedo radiation. The amount of radiation 

depends on the reflection coefficient of the surface, which is called the albedo. It usually supposes 

a very small contribution, and in some cases, it can be disregarded. Therefore, it is evident that the 

solar radiation that reaches the Earth's surface will have a different spectral distribution than that 

existing outside the atmosphere due to absorption and reflection and other factors (altitude of the 

place, geographic area, etc.) Atmospheric absorption is greater at certain wavelengths. This is 

known as selective absorption which is a phenomenon influenced by atmospheric factors. For 

example, very short-wavelength radiation such as ultraviolet (UV) light is absorbed by ozone. While 

radiation in the infrared (IR) range is attenuated by the presence of water vapor, carbon dioxide, 

and other gases and particles in the atmosphere. 

1.3 ARIMA Models 

The ARIMA family of models [11], also called Box-Jenkins models, is an essential forecasting tool 

and the basis for many fundamental ideas in the time series analysis. Autocovariance and 

autocorrelation function are the most critical parameters when selecting ARIMA models. The 

abbreviation ARIMA means Autoregressive Integrated Moving Average Method. The word 

integrated confuses, but it refers to the differentiation of the data series. A model can be 

autoregressive if the variable of a period “t” is explained by the observations of itself correlating to 

previous periods, adding an error term. Autoregressive models are abbreviated with the word AR. 

The order of the model expresses the number of past observations of the analyzed time series. The 

three numbers after ARIMA refer to the order of the AR or autoregressive process, the order of 

differentiation, and the order of the MA or moving average process. A moving average model 

explains the value of a particular variable in a period “t” based on an independent term and a 

succession of errors. The order of the model expresses the number of pass observations of the 

analyzed time series. The three numbers written after ARIMA refer to the order of the AR or 

autoregressive process, the order of differentiation, and the order of the MA or moving average 

process. A so-called moving average model explains the value of a particular variable in a period t 
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as a function of an independent term and a succession of errors corresponding to previous periods, 

appropriately weighted. The combination of AR, MA, and ARMA models is a special case of ARIMA 

models. 

2. Literature Review  

Tripathi, Ray, Aruna, and Prasad [12] studied the effects of humidity on the photovoltaic panel. 

The experimental arrangement consisted of a mobile horizontal frame support installation, one 

meter high, to support the panel; above the horizontal frame, a shadow was created to generate 

any desirable range of solar irradiance within the laboratory. During the evaluation period, the 

humidity level inside the laboratory was changed using a humidifier, just a water spray. The results 

are increased humidity levels, solar insolation, and decreased panel power. With an increase of 50.1% 

from the humidity level, the panel's power output was reduced by 34.2%. In addition, it was found 

that due to the increase in humidity from 65.4% to 98.2%, the panel temperature was reduced by 

11.4%. 

The electrical performance of photovoltaic panels is primordial. It depends on two critical 

parameters: the solar radiation that reacts on the surface of the photovoltaic panel and the 

temperature of the surface of the photovoltaic panel. The performance of the photovoltaic solar 

panel is legitimately dependent on the solar radiation on its surface. As the solar radiation in the 

area increases, the performance of the photovoltaic panel increases. Although the panel is packaged 

for protection and defensive back isolation to retain heat, the strength of solar radiation entering 

the panel area is influenced by different natural phenomena, such as the accumulation of dust 

particles on the surface of the photovoltaic panel, shadow effect on the surface of the PV panel, the 

proximity of pollutant areas, water drops or vapor, and other climatic components [12]. 

The temperature of the photovoltaic panel hurts its operation. Significant reductions in 

photovoltaic panel output have been identified, like the open-circuit voltage, fill factor, and 

maximum power point, which have been reported with the incremental of the panel temperature, 

which are measurement parameters of the solar panels [13, 14]. In addition, some studies have 

reported a slight increase in the short-circuit current of the panel due to the increase in the 

temperature of the PV panel. Therefore, increasing the temperature of the photovoltaic panel 

causes a reduction in its general efficiency. Previous studies showed a decrease in the open-circuit 

voltage of the PV panel with a rate of 0.4%/K due to the increase in panel temperature. Therefore, 

similarly, the maximum power point and the fill factor decrease at a constant rate of 0.6%/K and 

0.2%/K, with increasing PV panel temperature. 

In another research carried out by Bahaidarah et al. [15], the results showed a 9% increase in the 

efficiency of the PV panel when the surface was cooled down and the PV panel temperature was 

reduced by 20%. In the same way, solar irradiation and the PV panel temperature are greatly 

affected by environmental parameters, like dust particles, ambient temperature, humidity, wind 

speed, and ambient temperature. Existing literature reviews and reports that the temperature at 

the PV panel increases due to the deposition of dust and shadow on the surface of the PV panel. 

Research related to the performance of photovoltaic panels has been carried out, where it is 

reported that the performance of photovoltaic panels degrades up to 28.7% due to the 42.1% 

increase in relative humidity. While in humidity areas, it reduced efficacy to 32.4% when the 

humidity level was raised to 6% and the PV panel was functioning at 58°C. It was observed that the 
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interaction between temperature and humidity is negatively correlated. The higher the humidity 

and the temperature, the efficiency of the equipment decreases, but in a small proportion. This is 

possible, given the climatic conditions observed in the field experiment, as the temperature is 

inversely proportional to relative humidity in most cases. 

In regions with higher latitudes where the weather is icy, the overall efficiency of solar panels is 

reduced due to the accumulation of ice and snow on top of the solar panels, such as the layer of ice 

and snow overloading the solar panel must be eliminated, either by removing snow or melting it, 

for this reason, a solution is the use of hot air ventilation systems when necessary, to maintain stable 

efficiencies [16]. In hot and dry desert climates, the efficiency decreases due to wind speed, low 

humidity, and high temperatures [17]. In the Mediterranean, where temperature and variable 

climates exist, the efficiency fluctuates depending on the time [18]. In the tropics, the efficiency is 

more stable and depends more on the generation of the panels [19]. There are differences in the 

efficiencies compared to urban climates concerning rural climates due to the emission of pollutants. 

In the research paper [20], time series is used for forecasting traffic in communication networks, 

highlighting the use of the ARIMA model. It introduces the statistical models with time series, which 

allow estimating future forecasts of traffic in modern communication networks, making use of 

traffic predictability with short-range dependency to carry out more efficient and timely control in 

an integrated manner at different levels of the network's functional hierarchy. This time series 

modeling is based on measurements taken of events periodically. The objective of this study is to 

focus on the series and how the series can be a perfect tool to model the data traffic in networks. 

This is possible through the Box-Jenkins methodology presented in this article. At the end of this 

investigation, it was possible to model a WiMAX traffic series of 10 days through an ARIMA time 

series with a small error.  

Ganti et al. [21] analyzed environmental impacts (dust accumulation, water droplets, and partial 

shade conditions) and improvement of factors affecting the energy utilization of solar PV in the 

mining industry. A hybrid method (gradient boosting decision tree and sparrow search algorithm) 

was proposed to improve solar PV system efficiency. The method was implemented in 

MATLAB/Simulink, and an evaluation of the performance was carried out by comparing current 

methods. The results demonstrated that the proposed control system was more efficient in tracking 

performance than existing models. 

2.1 Research Gap 

Researchers developed and applied new techniques for modeling time series, proving their 

effectiveness since they can deal with any data pattern and produce accurate forecasts based on 

the description of historical patterns in the data. The new proposals for time series analysis were 

initially applied to pollution problems, epidemiological diseases, and currently to physical and social 

phenomena. The methods developed were auto-regressive (AR), moving average (MA), integrated 

(I), and combinations between them (ARMA and ARIMA). The main difference between these 

models and the classic ones is the stochastic approach that is given to the time series instead of 

treating them deterministically. Under this approach, the time series is conceived as a set of random 

time values generated from an unknown process; in other words, the series is conceived as a 

stochastic process. This approach aims to try to identify the probabilistic model that represents the 

main characteristics of the behavior of the series. ARIMA models present important advantages 
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compared with the classic simulation. The main one is the degree of matching that most time series. 

Different from classical modeling, where a series is fitted to an already established mathematical 

model, ARIMA models are fitted to a particular series; in this research work, the environmental 

parameters with higher correlation were selected and simulated to create a forecast and proactive 

solutions for plan management, idle restoration prevention, and optimum operation.  

2.2 Novelty 

ARIMA models of classical time series processing methods use concepts for ARIMA modeling 

derived from theories of old probability and mathematical statistics. The novelty of this study will 

consist of utilizing different correlations focused on Pearson and Kendal, besides the linear 

regression methods and statistical properties, to calculate the coefficients that impact solar power 

generation from a large-scale photovoltaic plant. Another innovative method based on the 

stochastic process is to perform or develop stationarity autoregression integrated moving average 

models that have not been addressed in evaluating the environmental parameters that affect the 

power generation from a photovoltaic plan or system. 

3. Methodology 

The work plan to develop this study is presented in Figure 1. It includes five phases that cover 

data gathering, cleaning, and database creation, followed by the basic and advanced plotting with 

the variables selected by a systematic table to select the variables to be analyzed. The next phase 

consists of evaluating the environmental parameters against the power generation, plane of array, 

and irradiation energy, using coefficient correlations to study the relationship between quantitative 

variables, followed by linear regression methods and statistical analysis. This study will provide 

information about the intensity and direction of the relation or covariation between all the variables 

related linearly.  

 

Figure 1 Methodological stages. 

3.1 Phase 1: Data Preparation 

Phase 1 data preparation focuses on cleaning, structuring, formatting, validation, and storage. 

All the data and the relevant information for analysis were stored using the software Microsoft 
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Access and a proper tool to create and display the information. The information selected is the key 

environmental parameters measured from the Collector Station (CS), Meteorological Monitoring 

Facility (MMF), SPP interconnection facility data from the Power Quality (PQ) Meter, and forecast 

weather, as presented in Table 1.  

Table 1 Information selected for data preparation and analysis. 

Source Parameter Data frequency & Observations 

Meteorological Monitoring 
Facility (MMF) 

Ambient temperature (deg C) Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Average plane of array 
irradiance from all the MMFs 
(W/m2) 

Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Global horizontal irradiance 
(W/m2) 

Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Plane of array irradiance (W/m2) Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Plane of array irradiance 
totalizer (W/m2) 

Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Wind speed (m/s) Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Wind direction (0-360 deg) Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Relative Humidity (%) Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Rain gauge (mm) Daily data, 15 minutes interval data 

Meteorological Monitoring 
Facility (MMF) 

Atmospheric pressure (mbar) Daily data, 15 minutes interval data 

Power Quality (PQ) Meter Active Power Reading (MW) Daily data, 5 minutes interval data 

Power Quality (PQ) Meter Reactive Power Reading (MVAr) Daily data, 5 minutes interval data 

Power Quality (PQ) Meter Apparent Power Reading (MVA) Daily data, 5 minutes interval data 

Power Quality (PQ) Meter Active Energy Totalizer (kWh) Daily data, 5 minutes interval data 

Power Quality (PQ) Meter 
Reactive Energy Totalizer 
(kVArh) 

Daily data, 5 minutes interval data 

Panel cleaning record Cleaning PV panels by time 
Monthly data, 1 string consists of 20 
panels 

Forecast Weather (data from 
webpage) 

Power generation (Watts) Daily data, 15 minutes interval data 

Forecast Weather (data from 
webpage) 

Global horizontal irradiance 
(W/m2) 

Daily data, 15 minutes interval data 

Forecast Weather (data from 
webpage) 

Temperature (deg C) Daily data, 15 minutes interval data 

After the data was selected and processed, the next step was to create the database via 

Microsoft Access to store information. This will be connected to the graphical visualizer and final 

database, which will include data from MMF, PQ meter, and forecast weather, as presented in 

Figure 2.
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Figure 2 Database created with the data preparation process. 
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The connection between the application and Microsoft Access was created for the data 

visualization. The final plotting covered all environmental parameters and combined them with the 

power generation to create the scatter plots, as shown in Figure 3. 

 

Figure 3 Data visualization stage. 

3.2 Phase 2: Data Analysis  

Statistical analysis is adopted via histograms to observe the data distribution. It measures how 

frequently each value appears in every interval within a set of values. It also observes the intervals 

of selected values that appeared more frequently within the data set. It validates the data plotted 

and calculates the selected variables to form the correlation matrix, as presented in Figure 4. It 

demonstrates the use of statistics and distribution to select the variables for data analysis. For this 

study, descriptive statistics are adopted, including quantitative (number), qualitative (categorical), 

discrete (exact values), ordinal (order), and variability (std deviation).
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Figure 4 Data analysis and selection for evaluation. 

 

Variable "X" / "Y" Variable "Y" Variable "Y" Variable "Y" Variable "Y" Variable "Y"
Plane of array Irradiance (W/m²) Zone 2 to 8: Relative Humidity (%) Zone 3 to 13: Relative Humidity (%) Zone 1 to 5: Relative Humidity (%) Zone 4 to 20: Relative Humidity (%) Zone 5 to 21: Relative Humidity (%)

Plane of array Irradiance (W/m²) Zone 2 to 8: Wind Speed (m/s) Zone 3 to 13: Wind Speed (m/s) Zone 1 to 5: Wind Speed (m/s) Zone 4 to 20: Wind Speed (m/s) Zone 5 to 21: Wind Speed (m/s)

Active Power Reading (MW) Zone 2 to 8: Wind Direction (0 - 360°) Zone 3 to 13: Wind Direction (0 - 360°) Zone 1 to 5: Wind Direction (0 - 360°) Zone 4 to 20: Wind Direction (0 - 360°) Zone 5 to 21: Wind Direction (0 - 360°)

Active Power Reading (MW) Zone 2 to 8: Relative Humidity (%) Zone 3 to 13: Relative Humidity (%) Zone 1 to 5: Relative Humidity (%) Zone 4 to 20: Relative Humidity (%) Zone 5 to 21: Relative Humidity (%)

Active Power Reading (MW) Zone 2 to 8: Atmospheric Pressure (mbar) Zone 3 to 13: Atmospheric Pressure (mbar) Zone 1 to 5: Atmospheric Pressure (mbar) Zone 4 to 20: Atmospheric Pressure (mbar) Zone 5 to 21: Atmospheric Pressure (mbar)

Active Power Reading (MW) Zone 2 to 8:Raingauge (mm) Zone 3 to 13: Raingauge (mm) Zone 1 to 5: Raingauge (mm) Zone 4 to 20: Raingauge (mm) Zone 5 to 21: Raingauge (mm)

Active Energy Totalizer (MWh) Zone 2 to 8: Average Plane of Array Irradiance (W/m²) Zone 3 to 13: Average Plane of Array Irradiance (W/m²) Zone 1 to 5: Average Plane of Array Irradiance (W/m²) Zone 4 to 20: Average Plane of Array Irradiance (W/m²) Zone 5 to 21: Average Plane of Array Irradiance (W/m²)

Active Energy Totalizer (MWh) Zone 2 to 8: Global Horizontal Irradiance Totalizer (W/m²) Zone 3 to 13: Global Horizontal Irradiance Totalizer (W/m²) Zone 1 to 5: Global Horizontal Irradiance Totalizer (W/m²)  Zone 4 to 20: Global Horizontal Irradiance Totalizer (W/m²) Zone 5 to 21: Global Horizontal Irradiance Totalizer (W/m²)

Active Energy Totalizer (MWh) Zone 2 to 8: Plane of Array Irradiance (W/m²) Zone 3 to 13: Plane of Array Irradiance (W/m²) Zone 1 to 5: Plane of Array Irradiance (W/m²) Zone 4 to 20: Plane of Array Irradiance (W/m²) Zone 5 to 21: Plane of Array Irradiance (W/m²)

Correlation Matrix 

Mean
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Variance
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Kurtosis
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The next step in the data analysis was to filter the data using Microsoft Excel. The first stage of 

screening was carried out via the correlation function to develop the correlation matrix. Variables 

that exhibit a certain level of correlation, which varied between -1 and +1, are selected and 

highlighted, as presented in Figure 5. The values shaded in blue and red are selected to compute 

their Pearson, Kendall, and Spearman correlations. 
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Figure 5 First filtering for variable selection to calculate coefficient correlations. 
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4. Result and Discussion 

The monthly actual generation was plotted as part of the analysis from the large-scale solar 

photovoltaic plant, as shown in Figure 6. The performance ratio or PR is a factor that determines 

the quality of a photovoltaic installation and is one of the most important magnitudes to be 

considered. The performance ratio expresses the relationship between the actual energy 

performance and the theoretically possible energy performance [13]. It indicates what proportion 

of the energy is available after having deducted the energy losses and the consumption. It is not 

possible to reach a real value of 100% because, during the operation of the photovoltaic installation, 

there are always unavoidable losses. For example, thermal losses due to heating of the modules, 

losses due to the Joule effect in the wiring, and losses due to soiling [22]. However, it is possible to 

reach a PR of up to 85% for inefficient photovoltaic installations. The performance of a photovoltaic 

installation can be evaluated via the performance ratio over time as shown in Figure 7.  

 

Figure 6 Monthly energy generated for three years. 
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Figure 7 Performance ratio in each month. 

The next step is the calculation of the correlation factors and plotting them in a scatter plot. The 

main objective of this calculation was to see the trends of data and the relationship between 

variables. If the correlation between two variables is close to zero, it indicates that these variables 

do not present any relationship between them. On the other hand, when the correlation increases 

and approaches one, the variables show a strong relationship between them. When the correlation 

between two variables is equal to one, the variables behave the same and follow the same trend.  

The correlation results of the solar photovoltaic system are observed, it can be concluded that 

environmental parameters that have a direct relationship over the power generation are the 

ambient temperature and back module temperature in strong correlation values of Pearson 

correlation of 0.95, Kendall of 0.70 and Spearman of 0.84 and wind speed and wind direction have 

a moderate correlation with values of Pearson correlation of 0.47, Kendall of 0.45 and Spearman of 

0.60, and the inverse relationship over the power generation is the humidity with strong negative 

correlation with values of Pearson correlation of 0.79, Kendall of 69 and Spearman of 0.71 as shown 

in Figure 8. 
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Figure 8 Pearson, Kendall’s, and Spearman's correlation results. 
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Pearson (r): 0.2993

Kendall's (tau): 0.2484

Spearman rank: 0.3513

Pearson (r): 0.2000

Kendall's (tau): 0.1840

Spearman rank: 0.2549

Pearson (r): 0.2597

Kendall's (tau): 0.2376

Spearman rank: 0.3297

Pearson (r): 0.2192

Kendall's (tau): 0.2173

Spearman rank: 0.2902

Pearson (r): 0.2818

Kendall's (tau): 0.2160

Spearman rank: 0.3219

X/Y Zone 8: Wind Speed (m/s) Correlation Results Zone 13: Wind Speed (m/s) Correlation Results Zone 5: Wind Speed (m/s) Correlation Results Zone 20: Wind Speed (m/s) Correlation Results Zone 21: Wind Speed (m/s) Correlation Results

Active Power Reading (MW)

Pearson (r): 0.0030

Kendall's (tau): 0.0031

Spearman rank: 0.0045

Pearson (r): 0.0155

Kendall's (tau): 0.0096

Spearman rank: 0.0140

Pearson (r): 0.0155

Kendall's (tau): 0.0151

Spearman rank: 0.0212

Pearson (r): 0.0113

Kendall's (tau): 0.0066

Spearman rank: 0.0092

Pearson (r): 0.0023

Kendall's (tau): 0.0041

Spearman rank: 0.0058

Correlation Matrix 
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Although the correlations show how the variables are related, it is important to visualize this 

relationship or trend through graphs. Now the correlation coefficients have been carried out, and 

the statistical analysis of these data has been carried out, it is known what data should be used, the 

quantity of these, how they are distributed, how they are related to each other, etc. The following 

analysis in the methodology is to conduct the linear regression methods. Linear regression 

evaluation refers to finding a linear relationship between parameters or variables. The main idea of 

the algorithm is to get a line that best fits the data. The best-fit line is a line that matches most of 

the points from the data with the minimum error. The average distance of all the points to the line 

is the total error of the model. The results of the linear regression calculations are described in the 

correlation matrix below, where the results perfectly match those variables where the Pearson, 

Kendall’s, and Spearman’s coefficient correlations are positive or negative. Figure 9 shows the 

strong, medium, and weak coefficient correlations calculated using the Linear regression methods. 

 

Figure 9 Linear regression results for the variables selected. 

Figure 10 shows the actual generation power versus monthly sun hours and rainfall days per 

month. From observation, power generation is higher from January to March, whereas it is lower 

from June to August. 
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Figure 10 Actual energy generation versus monthly sun hours and rainfall days in each 

month. 

Figure 11 shows the SARIMA prediction simulation for the back module temperature, observing 

a lower standard deviation compared with the mean, a seasonality autodetected method, a lower 

calculation of error of 2.5%, and the best-selected information criterion of Akaike with a value of 

1.85. 

 

Figure 11 SARIMA model simulation for back module temperature. 

5. Conclusion 

Various research on optimal solar system sizing [23-24], solar plant-grid integration [25] and 

energy storage designs and safety for large scale solar [26] have been carried out to facilitate 
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national energy transition in meeting world energy challenges. This paper evaluated the 

environmental factors that impact solar PV performance in Malaysian weather conditions. This 

research provided quantification and comparative analysis of environmental factors to large-scale 

solar plants’ energy performance via regression and linear correlation models. The environmental 

parameters that have a direct relationship over the power generation are the ambient temperature 

and back module temperature in strong correlation, and wind speed and wind direction have a 

moderate correlation, and the inverse relationship over the power generation is the humidity with 

a strong correlation and rain with moderate correlation. The findings from this paper demonstrated 

that humidity and ambient temperature were significant factors that affected the energy yield of 

solar PV systems, while moderate wind speeds aided in the dispersion of dust. Therefore, the large-

scale solar PV plant must take the necessary steps in surveillance to monitor all these parameters 

to improve power generation in the future. Data analytics, average calculation, moving average 

methods, use of statistics, or the use of buckets to remove and clean unnecessary data, where the 

solution is to divide all the data into variables and classified by groups, each data group must have 

similar values than the other parameters with the help of programming language (python). To run 

prediction models based on regression methods, statistics, and correlations to have a proactive plan 

for cleaning the LSS PV plant. This can improve plant management, enhancement of power energy 

production, and detect idle panel restoration. It has also been observed that the places with the 

highest irradiation usually register more significant losses. ARIMA model forecasts support 

proactive maintenance, allowing plant operators to enhance performance under changing 

conditions. It is recommended to apply for future analysis SARIMA models to predict and forecast 

seasonal parameters, considering environmental parameters like temperature, wind speed, 

direction, humidity, and irradiance to predict soiling effects, shading, and degradation as a 

contingency proactive plan. Recommendations such as regular cleaning, real-time monitoring, and 

targeted maintenance strategies contribute to the country's renewable energy goals. Future 

research can be carried out using advanced forecasting methods and adaptable maintenance 

systems to further enhance the efficiency of solar PV systems applied to weather conditions from 

various geographical regions. 
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