(ISSN 2690-1692)
Journal of Energy and Power Technology (JEPT) is an international peer-reviewed Open Access journal published quarterly online by LIDSEN Publishing Inc. This periodical is dedicated to providing a unique, peer-reviewed, multi-disciplinary platform for researchers, scientists and engineers in academia, research institutions, government agencies and industry. The journal is also of interest to technology developers, planners, policy makers and technical, economic and policy advisers to present their research results and findings.
Journal of Energy and Power Technology focuses on all aspects of energy and power. It publishes original research and review articles and also publishes Survey, Comments, Perspectives, Reviews, News & Views, Tutorial and Discussion Papers from experts in these fields to promote intuitive understanding of the state-of-the-art and technology trends.
Main research areas include (but are not limited to):
Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) and grid connection impact
Energy harvesting devices
Energy storage
Hybrid/combined/integrated energy systems for multi-generation
Hydrogen energy
Fuel cells
Nuclear energy
Energy economics and finance
Energy policy
Energy and environment
Energy conversion, conservation and management
Smart energy system
Power Generation - Conventional and Renewable
Power System Management
Power Transmission and Distribution
Smart Grid Technologies
Micro- and nano-energy systems and technologies
Power electronic
Biofuels and alternatives
High voltage and pulse power
Organic and inorganic photovoltaics
Batteries and supercapacitors
Archiving: full-text archived in CLOCKSS.
Publication Speed (median values for papers published in 2022): Submission to First Decision: 4 weeks; Submission to Acceptance: 12 weeks; Acceptance to Publication: 11 days (1-2 days of FREE language polishing included)
Special Issue
Machine Learning and Artificial Intelligence for Power Systems
Submission Deadline: December 31, 2024 (Open) Submit Now
Guest Editors
Habib Hamam, Professor
Université de Moncton, Moncton, New Brunswick, Canada
Research interests: Optimization; Artificial Intelligence in Engineering; Deep Learning; Intelligent Power systems; Machine Learning
Ateeq Ur Rehman, PhD
Government College University Lahore, Lahore, Pakistan
Research interests: SioT; Data Science (ML DL AI); Big Data; Internet of Things
Dear Colleagues.
This special issue focuses on the application of artificial intelligence and machine learning models (including hybrid and integrated approaches) to power engineering prediction and optimization. Machine learning and artificial intelligence are among the most exciting areas of computing today. These methods are effective and popular in regression problems, including prediction and optimization. Efficient operation of power systems of all sizes, including microgrids, requires accurate short-term forecasts of power generation and power demand from renewable energy systems. Renewable energy generation forecasting is also important for owners of small-scale energy systems in order to optimize the use of various energy sources and to facilitate energy storage.
Keyword
Artificial Intelligence/Machine Learning/Deep Learning, Renewable Energy Generation.
Power system optimization
Power System Reliability.
Advanced Energy Technologies
Power system
Smart grid technologies
TOP