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Abstract 

The well-known classical heat capacity model developed by Debye proposed an approximate 

description of the temperature-dependence of heat capacities of solids in terms of a charac-

teristic integral, the T-dependent values of which are parameterized by the Debye tempera-

ture, 𝛩𝐷. However, numerous tests of this simple model have shown that within Debye’s 

original supposition of approximately constant, material-specific Debye temperature, it has 

little chance to be applicable to a larger variety of non-metals, except for a few wide-band-

gap materials such as diamond or cubic boron nitride, which are characterized by an unusu-

ally low degree of phonon dispersion. In this study, we present a variety of structurally sim-

ple, unprecedented algebraic expressions for the high-temperature behavior of Debye’s 

conventional heat-capacity integral, which provide fine numerical descriptions of the iso-

choric (harmonic) heat capacity dependences parameterized by a fixed Debye temperature. 

The present sample application of an appropriate high-to-low temperature interpolation 

formula to the isobaric heat capacity data for diamond measured by Desnoyers and Morri-

son [17], Victor [24], and Dinsdale [25] provided a fine numerical simulation of data within a 

range of 200 to 600 K, involving a fixed Debye temperature of about 1855 K. Representing 

the monotonically increasing difference of the isobaric versus isochoric heat capacities by 
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two associated anharmonicity coefficients, we were able to extend the accurate fit of the 
given heat capacity (𝐶𝑝(𝑇)) data up to 5000 K. Furthermore, we have performed a high-

accuracy fit of the whole 𝐶𝑝(𝑇) dataset, from approximately 20 K to 5000 K, on the basis of 

a previously developed hybrid model, which is based on two continuous low-T curve sec-

tions in combination with three discrete (Einstein) phonon energy peaks. The two theoreti-

cal alternative curves for the 𝐶𝑝(𝑇) dependence of diamond were found to be almost indis-

tinguishable throughout the interval from 200 K to 5000 K. 

Keywords  

Heat capacities; Debye function; non-Debye behavior; wide-band-gap materials; diamond; 

phonon dispersion; Debye temperature 

 

1. Introduction 

A basic model for approximate numerical simulations of measured heat capacities had been 

constructed more than 100 years ago by Debye [1]. This familiar model was based on the assump-

tion that the relevant phonon-densities-of-states (PDOS) spectra of metals as well as non-metals, 

should be describable to a good approximation in the form of purely quadratic phonon energy 

dependences, 𝑔𝑃(𝜀) ∝ 𝜀2, from 0 up to a certain cut-off (Debye) energy, 𝜀𝐷. This primary heat 

theory for solids [1] was focused, above all, on derivations of usable analytical formulae for nu-

merical calculations of isochoric heat capacities of crystal lattices (𝐶𝑉(𝑇)), which are generally 

defined as being given by the partial derivatives, 𝐶𝑉(𝑇) ≡ (𝜕𝑈(𝑇, 𝑉)/𝜕𝑇)𝑉 , of internal energies, 

𝑈(𝑇, 𝑉), with respect to the lattice temperature, T (at a fixed volume V). According to this theory 

[1], it should have been possible to describe the temperature dependence of 𝐶𝑉(𝑇) in terms of 

certain Debye function integrals [1], the T-dependent magnitudes of which are governed by a 

unique model-specific parameter, the so-called Debye temperature, 𝛩𝐷 = 𝜀𝐷/𝑘𝐵 (where 𝑘𝐵 rep-

resents the Boltzmann constant). 

However, since the middle of the past century, a wealth of experimental studies on the thermal 

properties of non-metals (semiconductors as well as isolators) has been performed. From the nu-

merous results of these studies, one could conclude that, as a rule, it becomes possible to simu-

late the measured heat capacity data using the Debye function integrals only under the assump-

tion that the Debye temperature depends (more or less strongly) on the lattice temperature, T. 

The corresponding 𝛩𝐷(𝑇) dependencies have been found to be very pronounced for typical semi-

conductor materials, in particular, for Si and Ge [2, 3] as well as for numerous III-V materials [4–6] 

and II-VI materials [7–11]. 

These material-specific 𝛩𝐷(𝑇) dependences show “snaky” shapes, which exhibit the following: 

(i) Rapid fall from their 𝑇 → 0 limiting magnitudes [12], 𝛩𝐷(0), to significantly lower minima, 

𝛩𝐷 𝑚𝑖𝑛, which are usually located at temperatures of the order 𝛩𝐷(0)/12 

(ii) Subsequent rise up to a certain maxima, 𝛩𝐷 𝑚𝑎𝑥, which are frequently located at tempera-

tures of the order 𝛩𝐷(0)/2 

(iii) Final drop to zero, 𝛩𝐷(𝑇𝑜) =  0, at the characteristic points on the T-scale, 𝑇𝑜, where the 

measured 𝐶𝑝(𝑇) curves are crossing the classical (limiting) Dulong-Petit value for harmonic lattice 
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heat capacities, 𝐶𝑝(𝑇𝑜) = 𝐶𝑉ℎ(∞) =  3𝑛𝐴𝑅 (where 𝑅 represents the gas constant and 𝑛𝐴 is the 

number of atoms per molecule of the material in consideration). 

Thus, in the case of these typical semiconductor materials, as well as various alkali halides [13–

16], the maxima of these “snaky” 𝛩𝐷(𝑇) curves are significantly higher than the associated mini-

ma, 𝛩𝐷 𝑚𝑎𝑥 > 𝛩𝐷 𝑚𝑖𝑛. Consequently, sufficiently broad temperature intervals do not usually exist 

within the confines of which the Debye temperature would indeed be approximately constant. 

This excludes the possibility of describing, at least, some limited sections of the given isochoric or 
isobaric heat capacity T-dependences, 𝐶𝑉/𝑝(𝑇), in terms of the Debye function integrals governed 

by fixed, material-specific Debye temperatures, 𝛩𝐷. 

On the other hand, among a larger variety of wide-band-gap materials (𝐸𝑔  > 3 eV), one can find 

at least a few cases where the differences between 𝛩𝐷 𝑚𝑎𝑥  and 𝛩𝐷 𝑚𝑖𝑛  are relatively small (being 

limited to a few %). This indicates that the 𝛩𝐷(𝑇) values within the respective T-intervals, from 

approximately 𝛩𝐷(0)/12 up to approximately  𝛩𝐷(0)/2, are more or less constant. Such a limited 

quasi-plateau behavior, 𝛩𝐷(𝑇) ≈ 𝛩𝐷 = 𝑐𝑜𝑛𝑠𝑡., of a 𝛩𝐷(𝑇) curve above 200 K, was well known 

already long ago for diamond (see Figure 1 in earlier studies [17], Figure 3 in [18], and cf. Figure 2 

in Section 4 of the present paper). A similar plateau behavior of the 𝛩𝐷(𝑇) curve has also been 

observed for cubic carbon nitride (c-BN) above 150 K (see Figure 2 in [19]). These two examples of 

wide-gap materials might already be sufficient to justify the present aim of deriving efficient for-

mulae for the conventional Debye function integral (governed by fixed 𝛩𝐷), which should hence 
enable us to perform careful least-mean-square fits of the duly limited (partial) 𝐶𝑉/𝑝(𝑇 >

𝛩𝐷(0)/12) datasets (similar to those available for diamond or c-BN) without involving numerical 

calculation procedures for the original Debye function integrals. 

In Section 2, we give a brief overview of the derivation of the conventional low-and high-

temperature approximations [11] for the Debye function integral, which are well known already 

from Debye’s original paper [1]. We confirm that Debye’s low-temperature formula [1, 11, 20, 21] 

is in principle capable of providing quite adequate numerical values for the Debye function inte-

gral even at lattice temperatures comparable with the Debye temperature, provided the respec-

tive summation procedure is not truncated at a very low order of summation terms. In contrast to 

the latter, we find again (in accordance with [1, 3, 11, 22]) that Debye’s original high-temperature 

Taylor series expansion is of little practical use in view of its rather bad convergence properties, 

which are caused by the alteration of signs of the respective expansion coefficients, i. e. 𝑐2𝑚
𝐷 =

(−1)𝑚|𝑐2𝑚
𝐷 | for the subsequent even-ordered (

𝛩𝐷

𝑇
)
2𝑛

 terms (𝑛 = 1, 2, 3, …). 

Significant improvements of convergence properties have already been shown in previous stud-

ies [11, 22] to be realizable by means of suitable transformations [23] of the given Taylor series 

expansions into structurally different versions that are embedded into conveniently chosen alter-

native (non-linear) functions. In the appendix, we briefly present two previous sample applications 

of this method to the high-temperature behavior of the Debye function, which resulted in the 

construction of an exponential series representation [22], and a derivation of an alternative Taylor 

series representation for reciprocal Debye function values, (𝜅𝐷ℎ(𝑥))
−1 [11].  

Of special usefulness within the present context is an unprecedented Taylor series representa-

tion for the squares of the reciprocal Debye function values, (𝜅𝐷ℎ(𝑥))
−2, which has been pre-

sented in the appendix. In Section 3, we qualitatively consider different combinations of truncated 

versions of the novel high-capacity Debye function formula, 𝜅𝐷ℎ
(𝑚𝑃)(𝑥) (Eq. (A.12)), with various 
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truncated versions of Debye’s conventional low-capacity Debye function expansion, 𝜅𝐷𝑙
(𝑛𝐷)(𝑥)(Eq. 

(2.2)). 

In Section 4, we visualize the actual temperature dependence of the effective (caloric) Debye 
temperature for diamond, 𝛩𝐷(𝑇), which is implied by the isobaric heat capacities, 𝐶𝑝(𝑇), given by 

Desnoyers and Morrison [17], Victor [24], and Dinsdale [25]. In addition, a least-mean-square fit-

ting has been performed for the whole combination of the respective 𝐶𝑝(𝑇) datasets, from ap-

proximately 200 K up to 5000 K. This fit is based on an appropriate low-to-high temperature inter-

polation formula in combination with additional anharmonicity-related terms, which come strong-

ly into play in the high-temperature region. As the main result of this fit, we found the effective 

Debye temperature to be 𝛩𝐷 ≅ 1855 K. 

In Section 5, we give a brief sketch of the basic equations of our previously developed repre-

sentative hybrid model [11, 26], which consists of two continuous low-T curve sections in combi-

nation with three discrete (Einstein) phonon energy peaks. We have also performed the corre-

sponding high-accuracy fit of the whole 𝐶𝑝(𝑇) dataset, from approximately 20 K up to 5000 K.  

The two theoretical alternative curves for the 𝐶𝑝(𝑇) dependence of diamond, resulting from 

the fit via the unprecedented high-to-low-T interpolation formulae (in Section 4), on the one hand, 

and from the high-accuracy fit via the previously developed hybrid model [11, 26] (in Section 5), 

on the other hand, have been found to be almost indistinguishable throughout the interval from 

200 K to 5000 K. This good agreement illustrates the potential usefulness of the computational 

framework of approximate Debye function formulae (displayed in Sec. 3) developed in this work 

and its possible application to the limited low-to-high-temperature heat capacity datasets, which 

are available for certain wide-band-gap materials characterized by sufficiently low degrees of 

phonon dispersion. 

Various other aspects and additional quantitative information resulting from the comparable 
alternative fittings of the 𝐶𝑝(𝑇) datasets, for diamond, under study, by using alternative models 

have been discussed in Section 6. 

2. Conventional Low-and High-temperature Expressions for the Debye Function  

According to Debye’s original heat capacity model [1], the isochoric lattice heat capacity is as-

sumed to be given by the product, 𝐶𝑉(𝑇) = 𝐶𝑉ℎ(∞)𝜅𝐷(𝑇) of the familiar Dulong-Petit limit, 

𝐶𝑉ℎ(∞) =  3𝑛𝐴𝑅, of the harmonic lattice heat capacity (for a material containing 𝑛𝐴 atoms per 

molecule) and a normalized (to unity) heat capacity shape function, 0 < 𝜅𝐷 ≤ 1. The latter is well 

known to be defined by an integral of the form [1, 4, 5, 10–12, 21] 

𝜅𝐷(𝑥) ≡
3

𝑥3
∫ 𝑑𝑧

𝑧4𝑒𝑧

(𝑒𝑧 − 1)2

𝑥

0

=
12

𝑥3
∫ 𝑑𝑧

𝑧3

𝑒𝑧 − 1

𝑥

0

−
3𝑥

𝑒𝑥𝑝( 𝑥) − 1
, (2.1) 

where the ratio between the (presumably material-specific) Debye temperature, 𝛩𝐷, and the lat-

tice temperature, 𝑇, is denoted as usual by 𝑥 = 𝛩𝐷/𝑇. 

Yet, with respect to the eventual numerical applications of this conventional model to the in-

terpretation of certain experimental data (with respect to which this simple model happens to be 

applicable), it is desirable to avoid the numerical integrations (in Eq. (2.1)) by using the appropri-

ate analytical or algebraic expressions for more or less extended regions of low and/or high tem-

peratures. 
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For low-temperature regions (𝑥 = 𝛩𝐷/𝑇 >> 1), it was found [1] to be convenient to expand 

the denominator in the second integral of Eq. (2.1) into an infinite Taylor series, (𝑒𝑧 − 1)−1 =

𝑒−𝑧(1 − 𝑒−𝑧)−1 = 𝑒−𝑧 + 𝑒−2𝑧 + 𝑒−3𝑧 +⋯. By performing the corresponding integrations (subse-

quently, by parts), within the second integral of Eq. (2.1), for the low-temperature behavior of the 

Debye function, 𝜅𝐷(𝑥), an infinite series expression of the familiar form [1, 11, 12, 20, 21] is ob-

tained: 

𝜅𝐷𝑙
(𝑛𝐷)(𝑥) =

4𝜋4

5𝑥3
−

3𝑥

𝑒𝑥𝑝( 𝑥) − 1
− 12𝑥 ∑ 𝑒𝑥𝑝( − 𝑛𝑥)

𝑛𝐷(→∞)

𝑛= 1

[
1

𝑛𝑥
+

3

(𝑛𝑥)2
+

6

(𝑛𝑥)3
+

6

(𝑛𝑥)4
] . (2.2) 

Concerning the actual range of validity of this basic Debye function series expansion (2.2), we 

would like to point out that it is, in principle, quite exact within the frame of a duly extended 

summation procedure (i. e., for the 𝑛𝐷 → ∞ limit, at least). It may thus be used, if necessary, for 

performing high-accuracy calculations of the 𝜅𝐷(𝑥) function (Eq. (2.1)) even for regions of relative-

ly high temperatures (𝑥 = 𝛩𝐷/𝑇 ≈ 1; see below) provided that the summation procedure is ex-

tended to sufficiently high order (e. g., up to 𝑛 ≈ 30). At the same time, it is obvious that this infi-

nite series representation (Eq. (2.2)) is not applicable to the 𝑇 →∞ limit. 

Concerning the opposite regime of the high-temperature behavior of the 𝜅𝐷(𝑥) integral, it is 

useful to rewrite Eq. (2.1), in accordance with (𝑒𝑧/2 − 𝑒−𝑧/2)/2 = 𝑠𝑖𝑛ℎ( 𝑧/2), in the equivalent 

form [3, 10–12] 

𝜅𝐷(𝑥) =
3

4𝑥3
∫ 𝑑𝑧

𝑧4

(𝑠𝑖𝑛ℎ (
𝑧
2))

2

𝑥

0

≤ 1. (2.3) 

For the (𝑠𝑖𝑛ℎ( 𝑧/2))−2 function one can use, in analogy to previous works [3, 11, 22], the Tay-

lor series expansion 

(sinh (
𝑧

2
))

−2

= 4𝑧−2 + 4∑
(−1)𝑚(2𝑚 − 1)|𝐵2𝑚|𝑧

2𝑚−2

(2𝑚)!

∞

𝑚=1

(2.4) 

where |𝐵2𝑚| denotes the absolute values of the respective Bernoulli numbers (i. e., |𝐵2|= 1/6, 

|𝐵4|= 1/30, |𝐵6|= 1/42, |𝐵8|= 1/30, |𝐵10|= 5/66, |𝐵12| = 691/2730, |𝐵14|= 7/6, |𝐵16|= 3617/510,…). 

Using the expansion in Eq. (2.4) in Eq. (2.3) and performing the respective integrations of the indi-

vidual 𝑧2𝑚+2 power terms, for the high-temperature behavior of the 𝜅𝐷(𝑥) function, one obtains 

a Taylor series expansion of the conventional form [1, 11, 20–22] 

𝜅𝐷ℎ
(𝑚𝐷)(𝑥) =  1 + ∑ 𝑐2𝑚

𝐷 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

, (2.5) 

where the expansion coefficients are given (in accordance with previous studies [1, 11, 20]) by 

𝑐2𝑚
𝐷 = (−1)𝑚

3 ⋅ (2𝑚 − 1)|𝐵2𝑚|

(2𝑚 + 3) ⋅ (2𝑚)!
, (2.6) 

i. e. explicitly [1, 11, 20–22] 
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𝑐2
𝐷 =

−1

20
, 𝑐4
𝐷 =

+1

560
, 𝑐6
𝐷 =

−1

18144
, 𝑐8
𝐷 =

+1

633600
, 𝑐10
𝐷 =

−1

23063040
. (2.7) 

(Note that the values of Debye’s conventional expansion coefficients, 𝑐2𝑚
𝐷  (2.6), are listed up to an 

order of 2𝑚 ≤ 16 in the left part of Table 1).  

However, due to the alternating signs of Debye’s original Taylor series expansion coefficients 

(2.7), a high-temperature series expansion of this conventional type (Eq. (2.5)) does not show 

good convergence properties (as already pointed out in Debye’s original paper [1] and illustrated 

in detail in previous studies [11, 22]). Thus, one has to look for possible alternative forms of high-

temperature representations of the Debye integral. 

3. Alternative High-temperature Representations for the Debye Function 

A very useful analytical tool for constructing alternative versions of the Taylor series represen-

tations for the high-temperature behavior, 𝜅𝐷ℎ(𝑥) (Eq. (2.5)), of the Debye function integral, 

𝜅𝐷(𝑥) (Eq. (2.1)), has been found to be provided by the method of performing suitable transfor-

mations [23] of a given Taylor series expansion into structurally different counterparts that are 

embedded into conveniently chosen alternative (non-linear) functions. This method had been 

used for the first time in [22] for deriving an equivalent Taylor series for the logarithm, 

𝑙𝑜𝑔( 𝜅𝐷ℎ(𝑥)) (Eq. (A.2)), of the conventional 𝜅𝐷ℎ(𝑥) representation (Eq. (2.5)). Inverting this rela-

tionship and observing that 𝑒𝑥𝑝( 𝑙𝑜𝑔( 𝜅𝐷ℎ(𝑥))) = 𝜅𝐷ℎ(𝑥), in [22], we came to a corresponding 

exponential series representation (Eq. (A.5)) for the 𝜅𝐷ℎ(𝑥) function which showed markedly bet-

ter convergence properties (see Figure 6 in [22]) than Debye’s original Taylor series representation 

(Eq. (2.5); for additional details, see [22] and subsection A.1 of the appendix of the present paper). 

In an analogous manner, we have derived an equivalent Taylor series expansion in [11] for the 

reciprocal Debye function value, 1/𝜅𝐷ℎ(𝑥) (Eq. (A.7/8)). Inverting the latter relationship, so that 

[1/𝜅𝐷ℎ(𝑥)]
−1 = 𝜅𝐷ℎ(𝑥), we came to an alternative analytical expression (Eq. (A.9)) for the 𝜅𝐷ℎ(𝑥) 

function which was found to show still significantly better convergence properties than the pre-

ceding exponential representation (for more details, see [11] and subsection A.2 of the appendix). 
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Table 1 The eight lowest-order expansion coefficients, 𝑟2≤2𝑚≤16
𝐷 , implied by the unprecedented high-capacity (high-temperature) alge-

braic formula, 𝜅
𝐷ℎ

(𝑚𝑝= 8)
(𝑥) (Eq. (A.12)), in comparison with their conventional counterparts, 𝑐2≤2𝑚≤16

𝐷 , due to Debye’s original version 

(see Eq. (12’) in [1]) of the high-temperature Taylor series expansion, 𝜅𝐷ℎ
(𝑚𝐷= 8)

(𝑥) (Eq. (25)). 

m 𝑐2𝑚
𝐷  𝑟2𝑚

𝐷  

1 −
1

20
= −0.05 

1

10
=  0.1 

2 
1

560
=  1.78571428571 ×  10−3 

11

2800
=  3.92857142857 ×  10−3 

3 −
1

18144
= −5.5114638448 ×  10−5 

169

2268000
=  7.45149911817 ×  10−5 

4 
1

633600
=  1.57828282828 ×  10−6 

29

46569600
=  6.2272383701 ×  10−7 

5 
−1

23063040
= −4.33594183594 ×  10−8 

1

7207200000
=  1.3875013875 ×  10−10 

6 
691

594397440000
=  1.16252183051 ×  10−9 

−165409

6865290432000000
= −2.40935182041 ×  10−11 

7 
−1

32572108800
= −3.07011132175 ×  10−11 

50969

1167099373440000000
=  4.36715168904 ×  10−14 

8 
3617

4505374089216000
=  8.02819017549 ×  10−13 

3254687

2626871358988800000000
=  1.23899748226 ×  10−15 
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However, with respect to the present purpose of simulating experimentally measured heat ca-

pacities of a low-dispersion wide-band-gap material such as diamond (see Section 4), it is useful to 

display still another version of a rapidly converging series expansion for the 𝜅𝐷ℎ(𝑥) function. The 

corresponding investigation has been done below (in Subsection A.3 of the Appendix) by consider-

ing the squares of the reciprocal Debye function values (1/𝜅𝐷ℎ(𝑥))
2 (Eq. (A.10)). Inverting the 

latter relationship, so that [(1/𝜅𝐷ℎ(𝑥))
2]−

1

2 = 𝜅𝐷ℎ(𝑥), In the present study (in Appendix A.3), we 

came to a novel (unprecedented) expression (Eq. (A.12)) for the 𝜅𝐷ℎ(𝑥) function having the alge-

braic form, 

𝜅𝐷ℎ
(𝑚𝑃)(𝑥) = [1 + ∑ 𝑟2𝑚

𝐷 𝑥2𝑚

𝑚𝑃(→∞)

𝑚= 1

]

−
1
2

. (3.1) 

This form has been found to be extraordinarily well suited for the present purpose. The actual 

values of the respective Taylor series expansion coefficients, 𝑟2𝑚≤16
𝐷 , are listed up to an order of 

2𝑚 ≤ 16 in the right column of Table 1.  

 

Figure 1 Visualization of the rapid approach of a series of truncated versions of the 

high-temperature algebraic representation, 𝜅𝐷ℎ
(𝑚𝑃)(𝑥) developed in the present work (-

----curves, obtained using Eq. (3.1)), for 𝑚𝑃  = 1 to 4), toward the exact 𝜅𝐷(𝑥) function 

(⎯⎯⎯ curve, obtained using Eq. (2.1)). The upper inset shows that the increasing de-

viations of the truncated 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) curve from the exact 𝜅𝐷(𝑥) curve remain limited 

to less than 1% throughout an unusually large high-temperature interval (of 0 ≤ 𝑥 <

8). The “snaky” solid and dotted curves show that the actual deviations of the approx-

imate 𝜅̃𝐷(𝑥) dependences due to the relatively simple interpolation formulae given by 

Eqs. (3.5) and (3.6), are limited to ±0.5% or ±0.25%, respectively. From the middle in-

set, we see, e.g., that a significant reduction of deviations to only about ±0.007% or 
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±0.0006% can be achieved by using the interpolation formulae of the type 

𝜅̃𝐷
(𝑛𝐷≥1 ;𝑚𝑃=4)(𝑥) (Eq. (3.7)) involving truncated versions of Debye’s conventional low-

capacity representation, 𝜅𝐷𝑙
(𝑛𝐷)(𝑥) (Eq. (2.2)), of the two lowest orders, 𝑛𝐷= 1 or 2, re-

spectively.  

3.1 Alternate Usage of High-and Low-temperature Debye Function Formulae 

From Figure 1, we see (in analogy to Figure 8 of an earlier study [11]) that the deviations, 

𝜅𝐷𝑙
(𝑛𝐷≥1)(𝑥) − 𝜅𝐷(𝑥) > 0, of Debye’s conventional low-temperature curves (Eq. (2.2)) are decreas-

ing with the increasing number of summation steps, 𝑛𝐷= 1, 2, …, and they are increasing with de-

creasing magnitude of the argument 𝑥(= 𝛩𝐷/𝑇). In contrast to the latter, the deviations, 

𝜅𝐷ℎ
(𝑚𝑃= 7)

(𝑥) − 𝜅𝐷(𝑥) > 0, of the high-temperature curve (Eq. (3.1)) constructed in this study, is 

seen to monotonically increase with increasing magnitude of the argument 𝑥(= 𝛩𝐷/𝑇). Conse-

quently, the individual pairs of these two complementary low-and high-temperature curves are 

mutually crossing, 𝜅𝐷𝑙
(𝑛𝐷≥1)(𝑥𝑐) = 𝜅

𝐷ℎ

(𝑚𝑝= 7)
(𝑥𝑐), at certain (𝑛𝐷-dependent) crossing points, 𝑥𝑐. We 

see from a corresponding list for a series of 𝑛𝐷 values (in Table 2) that the individual crossing point 

positions, 𝑥𝑐, and the corresponding deviations from the exact 𝜅𝐷(𝑥𝑐) values, 

𝜅𝐷𝑙
(𝑛𝐷≥1)(𝑥𝑐) − 𝜅𝐷(𝑥𝑐) = 𝜅𝐷𝑙

(𝑚𝑃= 7)(𝑥𝑐) − 𝜅𝐷(𝑥𝑐) > 0, (3.2) 

are rapidly decreasing with increasing 𝑛𝐷 (cf. the positions of the solid circles, for the cases of 𝑛𝐷 

= 1 and 2, in the middle inset to Figure 2).  

Table 2 Positions of the crossings, 𝑥𝑐, of the unprecedented high-temperature curve, 

𝜅𝐷ℎ
(𝑚𝑃= 7)

(𝑥 < 7) (Eq. (3.1);----curve shown in the middle inset of Figure 1), with various 

(truncated) samples of Debye’s conventional low-capacity (low-temperature) curves, 

𝜅𝐷𝑙
(𝑛𝐷= 1,2,...)

(𝑥) (Eq. (2.2);---curves shown, for 𝑛𝐷 = 1 and 2, in the middle inset of 

Figure 1). In the third column, we have quoted the maximum values of the relative de-

viations, 𝛿𝜅̂𝐷(𝑥𝑐)/𝜅𝐷(𝑥𝑐), between the exact 𝜅𝐷(𝑥) curve (Eq. (2.1)) and the com-

pound 𝜅̂𝐷
(𝑛𝐷≥1 ;𝑚𝑃=7)(𝑥) curves (Eq. (3.4)). 

𝑛𝐷 𝑥𝑐 𝛿𝜅̂𝐷(𝑥𝑐)

𝜅𝐷(𝑥𝑐)
 

1 6.18 1.310−4 

2 4.81 6.810−6 

3 4.04 7.010−7 

4 3.53 1.110−7 

5 3.16 2.310−8 

6 2.87 5.810−9 

8 2.45 5.910−10 

10 2.16 1.010−10 

15 1.69 2.110−11 
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In this way, we come to rather good approximations, 𝜅̂𝐷
(𝑛𝐷 ;𝑚𝑃=7)(𝑥), for the Debye integral in 

terms of 𝑛𝐷-specific combinations of complementary high-and low-temperature curve sections, 

𝜅̂𝐷
(𝑛𝐷 ;𝑚𝑃=7)(𝑥) = 𝜅𝐷ℎ

(𝑚𝑃= 7)(𝑥), 𝑓𝑜𝑟 𝑥 ≤ 𝑥𝑐(𝑛𝐷), 𝑎𝑛𝑑 𝜅̂𝐷
(𝑛𝐷 ;𝑚𝑃=7)(𝑥) = 𝜅𝐷𝑙

(𝑛𝐷)(𝑥), 𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑐(𝑛𝐷). (3.3) 

Equivalently, we can also express the latter combinations in the more compact form, 

𝜅̂𝐷
(𝑛𝐷 ;𝑚𝑃=7)(𝑥) = 𝑚𝑖𝑛 {𝜅𝐷ℎ

(𝑚𝑃= 7)
(𝑥) ; 𝜅𝐷𝑙

(𝑛𝐷)( 𝑥)}  for 0 ≤ 𝑥 < 7, (3.4) 

(and 𝜅̂𝐷
(𝑛𝐷 ;𝑚𝑃=7)(𝑥) = 𝜅𝐷𝑙

(𝑚𝐷)(𝑥), for 𝑥 > 7). In this way, owing to the requirement (Eq. (3.4)) of 

choosing just the lower value of the two competitive (approximate) high-and low-temperature 

functions, 𝜅𝐷ℎ
(𝑚𝑃= 7)

(𝑥) versus 𝜅𝐷𝑙
(𝑛𝐷)(𝑥), it is automatically assured that the switch between the 

two complementary curve sections occurs just at the respective crossing point, 𝑥𝑐(𝑛𝐷).  

From Table 2, we see that by limiting the summation procedure for 𝜅𝐷𝑙
(𝑛𝐷)(𝑥) (in Eq. (2.2)) e.g. 

to only 4 steps (𝑛𝐷= 4), one nevertheless comes to a rather gentle approximation for the Debye 

function, 𝜅𝐷(𝑥) ≅ 𝜅𝐷
(𝑛𝐷= 4 ;𝑚𝑃=7)(𝑥), the maximum deviations of which from the exact function 

are limited to an order of 10−7. Such a high degree of accuracy is largely sufficient with respect to 

practical applications. 

3.2 Interpolation Formulae 

It turns out that it is possible to find yet another way of constructing good analytical approxi-

mations for the Debye function integral, 𝜅𝐷(𝑥) (Eq. (2.1)), which does not involve a sudden switch 

between the high-and low-temperature curve sections at their crossing points. This alternative 

way is based on the construction of suitable interpolation formulae that bridge the gap between a 

truncated version of Debye’s low-temperature expression (Eq. (2.2)), 𝜅𝐷𝑙
(𝑛𝐷)(𝑥) > 𝜅𝐷(𝑥), and a 

suitably chosen sample of the novel analytical high-temperature expressions, 𝜅𝐷ℎ
(𝑚𝑃)(𝑥) (Eq. (3.1)), 

the curve of which should throughout be running below the exact 𝜅𝐷(𝑥) curve. We see from the 

upper and middle insets of Figure 1 that this feature is found to be realized in particular for the 

𝑚𝑃 =  4 case. 

Let us first consider the simplest case of an interpolation formula, a combination of the high-

temperature expression, 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) (Eq. (3.1), with the asymptotic (𝑥 →∞ limiting) term of the 

conventional low-temperature expression (Eq. (2.2)), i.e., 𝜅𝐷𝑙
(𝑙𝑖𝑚.)

(𝑥) =  4𝜋4/5𝑥3 [1, 11, 12, 20]. An 

appropriate interpolation formula for connecting this pair of non-crossing high-and low-

temperature curves can be chosen to be of the form 

𝜅̃𝐷(𝑥) = √
𝑒𝑥𝑝 (

𝑥𝑜 − 𝑥
𝛥𝑥 ) + 1

(1 + ∑ 𝑟2𝑚
𝐷 𝑥2𝑚𝑚𝑃= 4

𝑚= 1
) ⋅ 𝑒𝑥𝑝 (

𝑥𝑜 − 𝑥
𝛥𝑥

) + (
5
4𝜋4

)
2

𝑥6

2

, (3.5) 

where 𝑥𝑜 and 𝛥𝑥 are formula-specific interpolation parameters. 

An optimal approach of the interpolation curve, 𝜅̃𝐷(𝑥) (Eq. (3.5)), to the exact 𝜅𝐷(𝑥) depend-

ence could be achieved by performing a corresponding least-mean-square fitting, which leads to 

the adjusted values of 𝑥𝑜= 9.775 and 𝛥𝑥 = 0.84 for the respective interpolation coefficients. The 
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remaining deviations (𝜅̃𝐷(𝑥) − 𝜅𝐷(𝑥))/𝜅𝐷(𝑥), of Eq. (3.5) from the exact Debye function, 𝜅𝐷(𝑥), 

are visualized by the solid (“snaky”) curve in the upper inset of Figure 1. From the latter, we see 

that these deviations from the exact Debye function (Eq. (2.1)), which are implied by this primary 

interpolation formula (Eq. 3.5)), are limited to an order of ±0.5%. 

A moderate reduction of deviations from the exact Debye function (Eq. (2.1)) can be readily 

achieved by including the subsequent term, namely, the term −3𝑥/(𝑒𝑥 − 1)) occurring in Debye’s 

low-temperature expression, 𝜅𝐷𝑙(𝑥) (Eq. (2.2)), into a conveniently constructed interpolation for-

mula. Accordingly, we consider a combination of a truncated low-temperature expression of the 

type 𝜅𝐷𝑙(𝑥) → 4𝜋4/5𝑥3 − 3𝑥/(𝑒𝑥 − 1) with the same high-temperature expression as above, 

𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) (Eq. (3.1). We have found an appropriate version of an interpolation formula for this 

combination to be given by the expression 

𝜅̃𝐷
(0)(𝑥) =

[(1 + ∑ 𝑟2𝑚
𝐷 𝑥2𝑚

𝑚𝑃= 4
𝑚= 1 )

−
1
2 ⋅ 𝑒𝑥𝑝 (

𝑥𝑜 − 𝑥
𝛥𝑥 ) +

4𝜋4

5𝑥3
−

3𝑥
𝑒𝑥 − 1

]

[𝑒𝑥𝑝 (
𝑥𝑜 − 𝑥
𝛥𝑥 )+ 1]

, (3.6) 

involving adjusted values of 𝑥𝑜= 9.05 and 𝛥𝑥 = 0.60 for the respective interpolation coefficients. 

The remaining deviations (𝜅̃𝐷
(0)
(𝑥) − 𝜅𝐷(𝑥))/𝜅𝐷(𝑥), of Eq. (3.6) from the exact Debye function, 

𝜅𝐷(𝑥), are visualized by the dotted (“snaky”) curve in the upper inset in Figure 1. From the latter, 

we can see that the respective deviations of Eq. (3.6) from the exact Debye function (Eq. (2.1)), are 

limited to an order of ±0.25%. Thus, alternative use of Eq. (3.6), instead of Eq. (3.5), involves a re-

duction of deviations from the exact Debye function by a factor of about 2. 

For the sake of completeness, we would like to mention that an even more pronounced (order-

of-magnitude) reduction of deviations from the exact 𝜅𝐷(𝑥) function, which is inherent to interpo-

lation formulas of the type given by Eq. (3.6), can be achieved when one envisages combinations 

of the same high-temperature expression, 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) (Eq. (2.1)), with low-temperature expres-

sions of Debye’s type, 𝜅𝐷𝑙
(𝑛𝐷≥1)(𝑥) (Eq. (2.2)), that is retaining at least one summation step, i.e.,  

𝜅̃𝐷
(𝑛𝐷≥1 ;𝑚𝑃=4)(𝑥) =

[(1 + ∑ 𝑟2𝑚
𝐷 𝑥2𝑚

𝑚𝑃= 4
𝑚= 1 )

−
1
2 ⋅ 𝑒𝑥𝑝 (

𝑥𝑜 − 𝑥
𝛥𝑥 ) + 𝜅𝐷𝑙

(𝑛𝐷≥1)(𝑥)]

[𝑒𝑥𝑝 (
𝑥𝑜 − 𝑥
𝛥𝑥 ) + 1]

. (3.7) 

In this connection, we succeeded in realizing rather good simulations of the true 𝜅𝐷(𝑥) func-

tion by an interpolation formula of the latter type (Eq. (3.7)) even for the two lowest-order ver-

sions, where Debye’s low-temperature expansion, 𝜅𝐷𝑙
(𝑛𝐷)(𝑥) (Eq. (2.2)), has been truncated just 

after the first or second summation step (i.e., 𝑛𝐷= 1 or 2).  

Appropriate interpolation coefficients for 𝑛𝐷 =  1 were found to be 𝑥𝑜= 5.393 in combination 

with 𝛥𝑥 = 0.24, involving a limitation of deviations to less than ±0.007% (cf. the solid (“snaky”) 

curve in the middle inset in Figure 1). For 𝑛𝐷 =  2, the adjusted interpolation coefficients turned 

out to be 𝑥𝑜= 4.146 in combination with 𝛥𝑥 = 0.15, involving an order-of-magnitude reduction of 

deviations to less than ±0.0006% (cf. the corresponding solid (“snaky”) curve in the middle inset in 

Figure 1).  
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Thus, if necessary, one can also use an interpolation formula of the type given by Eq. (3.7) in 

order to come to a high-accuracy approximation for the Debye function integral provided that at 

least two summation steps are retained in the corresponding low-capacity expression, 𝜅𝐷𝑙
(𝑛𝐷≥2)(𝑥) 

(Eq. (2.2)). An advantageous feature of any one of the interpolation formulae displayed above 

(i.e., Eq. (3.5) to (3.7)) is due to the fact that the slopes (as well as the higher-order derivatives) of 

the approximate 𝜅̃𝐷(𝑥) curves are continuous functions of their argument, 𝑥 = 𝛩𝐷/𝑇. At variance 

to this, the slopes (including the higher-order derivatives) of approximate functions of the type 

𝜅̂𝐷
(𝑛𝐷≥1 ;𝑚𝑃=7)(𝑥) (Eq. (3.4)) are changing discontinuously at the respective points of intersection, 

𝑥𝑐, between the connected high-and low-temperature curve sections, 𝜅𝐷ℎ
(𝑚𝑃= 7)

(𝑥) and 𝜅𝐷𝑙
(𝑛𝐷)(𝑥). 

4. Sample Applications to Diamond 

It is a matter of principle that any one of the preceding approximate expressions (displayed in 

the preceding sections 2 and 3) for the Debye function integral, 𝜅𝐷(𝑥) = 𝜅𝐷(𝛩𝐷/𝑇) (Eq. (2.1)), are 

applicable only to those heat capacity datasets for, which the basic assumption of a constant De-

bye temperature, 𝛩𝐷(𝑇) ≈ 𝛩𝐷 = constant, is realized to a good approximation (at least within a 

limited low-to-high temperature region). Such a special state of affairs can hardly be expected to 

be found for typical semiconductor materials (𝐸𝑔  < 3 eV), and it is only very rarely encountered 

even for wide-band-gap materials (𝐸𝑔  > 3 eV). Nevertheless, with respect to the latter, one can 

find a few cases from among a large variety of isolators, for which the basic assumption of a nearly 

constant Debye temperature appears to be approximately fulfilled (within a limited temperature 

interval, at least). As a typical case of this type, let us consider the actual magnitudes of the effec-

tive (caloric) Debye temperature, 𝛩𝐷(𝑇), of diamond (visualized in Figure 2). 

 

Figure 2 Magnitudes of the effective (caloric) Debye temperatures for diamond, 

𝛩𝐷(𝑇), which have been derived using two high-accuracy formulae (Eq. (4.1a) and 

(4.1b)) from the (isobaric) heat capacities, 𝐶𝑝(𝑇), measured in the low-capacity region 

by Desnoyer and Morrison [17] () and in the high-temperature region by Victor [24] (
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△) and Dinsdale [25] (). One can see, in particular, that the 𝛩𝐷(𝑇) values are nearly 

constant (deviating by less than ±12 K from an average value of about 1857 K) within a 

rather large interval of about 140 K < 𝑇 < 700 K. 

Concerning the individual sets of 𝛩𝐷(𝑇) values shown in Figure 2, we would like to point out 

that the 𝛩𝐷(𝑇) data points represented by open circles () for the low-temperature region (18 K 

< 𝑇 < 278 K) correspond to their original ones () shown by Desnoyer and Morrison [17] (in their 

Figure 1). At variance to these well-known low-temperature 𝛩𝐷(𝑇) data, the different sets of high-

temperature 𝛩𝐷(𝑇) data points shown here (in Figure 2) have been derived from the available 
sets of isobaric heat capacity values, 𝐶𝑝(𝑇 ≥ 300𝐾), that were given by Victor [24] (△) and 

Dinsdale [25] (). The corresponding point-by-point transformations have been performed here 
for the individual 𝐶𝑝(𝑇) vs. 𝐶𝑉ℎ(∞) ratios, 0 < 𝜅(𝑇) = 𝐶𝑝(𝑇)/𝐶𝑉ℎ(∞) < 1, by means of two analyt-

ical transformation equations [11] (cf. Eq. (B.5) and (B.3) in [11]), i.e., 

𝛩𝐷(𝑇) ≅ [(
4𝜋4

5𝜅(𝑇)
)

1
3

− 𝑔 ⋅ 𝜅(𝑇) 𝑒𝑥𝑝 (−
𝑝

𝜅(𝑇)
)] × 𝑇, 𝑓𝑜𝑟 0 < 𝜅(𝑇) ≤ 0.5975, (4.1𝑎) 

(involving the parameters 𝑔 = 3.145972 and 𝑝 = 0.07037359) in combination with 

𝛩𝐷(𝑇) ≅ √−35 + 5 ⋅ √49 + 56 ⋅ ((𝜅(𝑇))
−1
− 1)

22

× 𝑇, for 0.5975 ≤ 𝜅(𝑇) ≤ 1. (4.1𝑏) 

Note that the maximum inaccuracy resulting from these two of 𝛩𝐷(𝑇) expressions amounts to 

only 0.13% (at the crossing point, 𝜅𝑐= 0.5975, between Eqs. (4.1a) and (4.1b)).  

Viewing the whole 𝛩𝐷(𝑇) dependence shown in Figure 2, we see, on the one hand, that the 

sequence of low-temperature data points due to Desnoyers and Morrison’s cryogenic data show a 

rapid fall from a 𝑇 → 0 limiting magnitude of about 𝛩𝐷(0) ≈ 2223 K to magnitudes below 1900 K 

(in the vicinity of 𝑇 ≈ 150 K). In view of such a rapid change in the 𝑇-dependent Debye tempera-

ture, it is obvious that it is impossible to describe the temperature dependence of the underlying 

cryogenic heat capacity of diamond, 𝐶𝑝(𝑇 < 150 K) (cf. the 𝐶𝑝(𝑇) list presented in the Appendix 

of [17]), in terms of a Debye function integral, 𝜅𝐷(𝛩𝐷/𝑇) (Eq. (2.1)), with a fixed Debye tempera-

ture (whichever would be the magnitude chosen for 𝛩𝐷). At the same time, we see also from Fig-

ure 2 that the magnitudes of 𝛩𝐷(𝑇) within a rather large interval (of about 140 K < 𝑇 < 700 K)  are 

within a relative narrow interval of 𝛩𝐷(𝑇) ≈ (1857 ±12) K (corresponding to the variations of 

𝛩𝐷(𝑇) values by less than 1.3%). From this observation one can expect that it should be possible 

to perform a reasonable fitting of the temperature dependence of the heat capacity, within this 

limited low-to-high temperature region, by a Debye function parameterized by a fixed Debye 
temperature, 𝛩𝐷 = const. ≈ 1857 K. 

In performing the calculations, for the isochoric (harmonic) part of the heat capacity,  

𝐶𝑉ℎ(𝑇) ≅ 𝐶𝑉ℎ(∞) ⋅ 𝜅̃𝐷 (
𝛩𝐷
𝑇
) , (4.2) 
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and the associated isobaric heat capacities, 𝐶𝑝(𝑇) (see below), we choose, within the present 

study, the primary interpolation formula proposed above, 𝜅̃𝐷(𝑥) (Eq. 3.5), i.e., explicitly 

𝜅̃𝐷 (
𝛩𝐷
𝑇
) ≅

√
  
  
  
  
  
  
 
 

𝑒𝑥𝑝 (
𝑥𝑜 −

𝛩𝐷
𝑇

𝛥𝑥
)+ 1

(1 + ∑ 𝑟2𝑛
𝐷 (

𝛩𝐷
𝑇 )

2𝑛
4
𝑛= 1 ) ⋅ 𝑒𝑥𝑝(

𝑥𝑜 −
𝛩𝐷
𝑇

𝛥𝑥
) + (

5
4𝜋4

)
2

(
𝛩𝐷
𝑇 )

6

2

, (4.3) 

which appears to be directly applicable to a region of 170 K < T < 400 K (cf. the corresponding 

𝛩𝐷ℎ(𝑇) behavior shown by the dashed curve in Figure 2). At the same time, we see from Figure 2 

that the actual (effective) 𝛩𝐷(𝑇) values reach their local maximum in the region between approx-

imately 400– 500 K and subsequently decrease with increasing temperature. Such behavior is well 

known as a characteristic feature of non-negligible contributions of lattice expansion and anhar-
monicities to the observable (isobaric) heat capacities, 𝐶𝑝(𝑇). In accordance with our frequently 

adopted analytical relationship [3, 6, 10, 22, 26, 32] between isochoric (harmonic) and the associ-

ated isobaric heat capacities in solids, we can hence represent the associated 𝐶𝑝(𝑇) dependence 

by an analytical expression of the form 

𝐶𝑝(𝑇) = 𝐶𝑉ℎ(∞) ⋅ 𝜅̃𝐷 (
𝛩𝐷
𝑇
) [1 + 𝜅̃𝐷 (

𝛩𝐷
𝑇
) ⋅ ∑ 𝐴𝑛𝑇

𝑛

(∞)

𝑛= 1

] , (4.4) 

where the material-specific expansion coefficients 𝐴𝑛, 𝑛 = 1,2,…, are quantifying the combined 

effects of lattice expansion and anharmonicities. 

On the basis of Eq. (4.4) (in combination with Eq. (4.3)), we performed a least-mean-square fit-

ting process of the combined set of isobaric heat capacity data points, 𝐶𝑝(𝑇) [17, 24, 25], that are 

ranging within an unusually large temperature interval (from 180 K up to 5000 K; cf. Figure 3). As 

the adjustable parameters, we have obtained an effective (fixed) Debye temperature of 

𝛩𝐷= 1854.8 K in combination with the 𝐴𝑛 coefficients of 𝐴1= 2.079  10−5 K−1 and 𝐴2= 2.421  10−9 

K−2. The respective theoretical 𝐶𝑝(𝑇) and 𝜌(𝑇) = 𝐶𝑝(𝑇)/𝑇
3 dependencies are represented by the 

dash-dotted curves (---) in Figure 3. 
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Figure 3 Comparison of the alternative fittings (up to 5000 K) of the total set of isobaric 

heat capacity data, 𝐶𝑝(𝑇), measured by Desnoyer and Morrison [17] (), Victor [24] (

△), and Dinsdale [25] (), using qualitatively different analytical 𝐶𝑝(𝑇) representa-

tions. Good partial (intermediate-to-high-temperature) fittings, at a fixed Debye tem-

perature values of about 𝛩𝐷 ≈1853 K, can be seen to have been realized on the basis 

of the unprecedented interpolation formula 𝜅̃𝐷(𝑥) (Eq. (3.5)), in combination with Eq. 

(4.4) (for the region 180 K < 𝑇 < 5000 K), as well as via the truncated high-temperature 

(high-capacity) algebraic formula 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) (Eq. (A.12)), in combination with Eq. (4.4) 

(for the region 230 K < 𝑇 < 5000 K, at least). An exemplary high-accuracy fit for the 

whole 𝐶𝑝(𝑇) dataset (solid curve, due to Eq. (5.10)) had been obtained on the basis of 

the representative hybrid model displayed in Sec. 5. Also shown in the figure is the 

corresponding high-temperature behavior of the associated isochoric (harmonic) heat 

capacity, 𝐶𝑉ℎ(𝑇) =  3𝑅 ⋅ 𝜅𝑃(𝑇) (dashed curve, according to Eq. (5.4)).  

It is still instructive to consider a somewhat rougher, alternative approximation for the isochor-
ic part of the heat capacity, 𝐶𝑉ℎ(𝑇), and the associated isobaric heat capacity, 𝐶𝑝(𝑇). This is ob-

tained by replacing the approximate (interpolated) Debye function, 𝜅̃𝐷(𝛩𝐷/𝑇) (in Eq. (4.2) and 

(4.4)), simply by the truncated high-temperature (algebraic) formula, 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝛩𝐷/𝑇) (Eq. (3.1)), 

for the Debye function, i.e., explicitly 

𝐶𝑉ℎ(𝑇) → 𝐶𝑉ℎ(∞) ⋅ 𝜅𝐷ℎ
(𝑚𝑃= 4)

(
𝛩𝐷
𝑇
) =

𝐶𝑉ℎ(∞)

√1 + ∑ 𝑟2𝑛
𝐷 (

𝛩𝐷
𝑇 )

2𝑛
4
𝑛= 1

2

. (4.5)
 

The corresponding theoretical 𝜌(𝑇) → 𝐶𝑉ℎ(𝑇)/𝑇
3 dependence is represented by the dash-

double-dot curve (---) in the inset of Figure 3. 
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5. Alternative High-accuracy Fit due to the Representative Hybrid Model 

The actual variation of the Debye temperature, 𝛩𝐷(𝑇), of the wide-band-gap as well as semi-

conductor materials is well-known to usually undergo rapid falls from their limiting (𝑇 → 0) magni-

tudes, 𝛩𝐷(0), toward significantly lower minimum values, 𝛩𝐷 𝑚𝑖𝑛, which used to be located at 

temperatures of the order 𝑇𝑚𝑖𝑛 ≈ 𝛩𝐷(0)/12, (in accordance with Figure 2 for diamond; see also 

the cryogenic 𝛩𝐷(𝑇) curves shown for Si an Ge in [2, 3], for III-V semiconductors in [4–6], and for 

II-VI semiconductors in [7–11]). Thus, it is impossible to simulate the temperature dependences of 
the measured 𝐶𝑝/𝑉ℎ(𝑇) dependences in cryogenic (liquid-hydrogen) regions, 0 < 𝑇 < 𝛩𝐷(0)/12, 

by means of a Debye function integral (2.1) with a constant Debye temperature (whichever magni-

tude would have been chosen for a fixed 𝛩𝐷 value). A conventional way of reasonable fittings for 

at least partial (strongly truncated) sets of cryogenic 𝐶𝑉ℎ(𝑇) data is well known to be given in 

terms of an odd-order Taylor series expansion [6, 12, 14, 17, 27–32], 

𝐶𝑉ℎ(𝑇) = 𝑐3𝑇
3 + 𝑐5𝑇

5 + 𝑐7𝑇
7 +⋯ (5.1) 

(cf., in particular, the numerous applications of this simple analytical model to Group-IV, III-V, and 

II-VI materials in [12]). However, this truncated odd-order series expansion is continually found to 

be applicable only to narrow intervals of about 0 < 𝑇 < 𝛩𝐷(0)/(25 ± 10) [12]. (Note that, in 

cases of non-negligible contributions of an electronic system to the heat capacity in the liquid-

helium-region, an additional linear term [11, 28, 29], 𝐶𝑒𝑙(𝑇) → 𝑐1𝑇, still needs to be included in 

Eq. (5.1)). 

Suitable incorporation of this commonly observable cryogenic 𝐶𝑉ℎ(𝑇) behavior (Eq. (5.1)) into 

theoretical heat capacity models thus represents the necessary condition for their eventual ap-

plicability to the whole 𝑇-regions of practical interest, i.e., from the 𝑇 → 0 limit up to very high 

temperatures (up to melting points, if necessary). This condition is well-fulfilled by two qualitative-

ly different types of duly general analytical models, namely, the representative hybrid model [3, 

10, 11, 26], on the one hand, and one of the two (essentially equivalent) versions of an analytical 

Non-Debye formula [6, 32], on the other hand. By comparing the alternative fittings of various 

comprehensive 𝐶𝑝(𝑇) datasets by these two types of theoretical heat capacity models, we have 

found that the representative hybrid model [3, 10, 11, 26] is capable of providing the finest nu-
merical simulations of given 𝐶𝑝(𝑇) datasets. 

This model is based on a hybrid ansatz for the phonon density of states (PDOS) function, 𝑔𝑃(𝜀), 

which consists of three discrete (Einstein) peaks, 𝑤𝐸𝑖𝛿(𝜀 − 𝜀𝑖) (where 0 < 𝜀1 < 𝜀2 < 𝜀3), in com-

bination with two continuous (quadratic and quartic) power function sections, 𝑤𝐶1 ⋅ 3𝜀
2/𝜀1

3 and 

𝑤𝐶2 ⋅ 5𝜀
4/𝜀1

5 (for the low energy region from 0 up to the first Einstein peak, 𝜀1). This hybrid model 

thus involves a global normalization condition of the form 

𝑤𝐶1 +𝑤𝐶2 +𝑤𝐸1 +𝑤𝐸2 +𝑤𝐸3 =  1, (5.2) 

for the total set of weighting factors. Accordingly, the moments for this theoretical hybrid PDOS 

spectrum are given by [10, 11, 26] 

𝜇𝑃
(𝑛) = (

3

3 + 𝑛
𝑤𝐶1 +

5

5 + 𝑛
𝑤𝐶2) 𝜀1

𝑛 +∑𝑤𝐸𝑖𝜀𝑖
𝑛

3

𝑖= 1

𝑓𝑜𝑟 − 3 < 𝑛 < 0 𝑎𝑛𝑑 𝑛 > 0. (5.3) 



Recent Progress in Materials 2021; 3(4), doi:10.21926/rpm.2104042 
 

Page 17/33 

Within the framework of this model, the temperature dependence of the isochoric (harmonic) 

part of the heat capacity, 𝐶𝑉ℎ(𝑇) = 𝐶𝑉ℎ(∞) ⋅ 𝜅𝑃(𝑇), is described by the respective (duly normal-

ized) heat capacity shape function, 𝜅𝑃(𝑇) ≤ 1 [26], 

𝜅𝑃(𝑇) = 𝑤𝐶1 ⋅ 𝜅𝐶1 (
𝛩1
𝑇
) + 𝑤𝐶2 ⋅ 𝜅𝐶2 (

𝛩1
𝑇
) +∑𝑤𝐸𝑖 ⋅ (

𝛩𝑖

2𝑇 𝑠𝑖𝑛ℎ (
𝛩𝑖
2𝑇)

)

3

𝑖= 1

2

. (5.4) 

Here, 𝛩𝑖 = 𝜀𝑖/𝑘𝐵 denotes the respective Einstein temperatures pertaining to the individual dis-

crete peaks. The normalized contributions of the quadratic and quartic power function compo-

nents are given in terms of the ratio 𝑥1 = 𝛩1/𝑇, by the integrals [11] 

𝜅𝐶1(𝑥1) =
3

4𝑥1
3∫ 𝑑𝑧

𝑧4

(𝑠𝑖𝑛ℎ (
𝑧
2))

2 ≤ 1
𝑥1

0

 𝑎𝑛𝑑 𝜅𝐶2(𝑥1) =
5

4𝑥1
5∫ 𝑑𝑧

𝑧6

(𝑠𝑖𝑛ℎ (
𝑧
2))

2 ≤ 1
𝑥1

0

. (5.5) 

Comparing the integral representation for the 𝜅𝐶1(𝑥1) function (Eq. (5.5)) with Eq. (2.3) for the 

conventional Debye function integral, 𝜅𝐷(𝑥), we see that, that the dependence of 𝜅𝐶1(𝑥1) on the 

ratio 𝑥1 = 𝛩1/𝑇 is identical to the dependence of 𝜅𝐷(𝑥) on 𝑥 = 𝛩𝐷/𝑇. This means that the as-

ymptotic (𝑇 → 0) temperature dependence of 𝜅𝐶1(𝑥1) for sufficiently low temperatures, 𝑥1 =

𝛩1/𝑇 > 12, tends to the well-known limiting cubic power function, 𝜅𝐶1(𝛩1/𝑇) → (4𝜋4/5) ⋅

(𝑇/𝛩1)
3 (in accordance with [11, 26]). Analogously, for the asymptotic behavior of the second 

component, 𝜅𝐶2(𝑥1), an asymptotic (𝑇 → 0) temperature dependence is obtained in the form of a 

quintic power function, 𝜅𝐶2(𝛩1/𝑇) → (80𝜋6/21) ⋅ (𝑇/𝛩1)
5 [11, 26]. For regions of very low tem-

peratures, 𝑇 < 𝛩1/12, this hybrid model reduces to combinations of unambiguously fixed cubic 

and quintic 𝑇-power function terms, 

𝐶𝑉ℎ(𝑇) → 𝐶𝑉ℎ(∞) (𝑤𝐶1 ⋅
4𝜋4

5𝛩1
3 ⋅ 𝑇

3 +𝑤𝐶2 ⋅
80𝜋6

21𝛩1
5 ⋅ 𝑇

5) . (5.6) 

The latter asymptote is in qualitative accordance with the occurrence of the respective two 

lowest-order power terms occurring in the well-known empirical low-temperature heat capacity 

formula given by Eq. (5.1), 𝐶𝑉ℎ(𝑇) → 𝑐3𝑇
3 + 𝑐5𝑇

5. Comparing the latter with Eq. (5.6), we see 

that the empirical expansion coefficients, 𝑐3 and 𝑐5, can be represented in terms of the weighting 

factors 𝑤𝐶1, 𝑤𝐶2, and the characteristic phonon temperature, 𝛩1, due to the first (lowest) Einstein 

phonon peak, by the following relations: 

𝑐3 = 𝐶𝑉ℎ(∞) ⋅ 𝑤𝐶1
4𝜋4

5𝛩1
3  𝑎𝑛𝑑 𝑐5 = 𝐶𝑉ℎ(∞) ⋅ 𝑤𝐶2

80𝜋6

27𝛩1
5 . (5.7) 

Further, we observe that the coefficient 𝑐3 is well-known to be unambiguously connected with 

the 𝑇 → 0 limiting magnitude of the Debye temperature, 𝛩𝐷(0), by the relation [12] 

𝛩𝐷(0) = (
(
4
5)𝜋

4𝐶𝑉ℎ(∞)

𝑐3
)

1
3

, which is equivalent to 𝑐3 = 𝐶𝑉ℎ(∞) ⋅
4𝜋4

5(𝛩𝐷(0))
3 . (5.8) 
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Comparing the latter expression for 𝑐3 (in (5.8)) with the preceding one (in (5.7)), we see that 

the ratio between 𝛩1 and 𝛩𝐷(0) is unambiguously determined by the weighting factor, 𝑤𝐶1, for 

the cubic component [11], i.e., 

(
𝛩1

𝛩𝐷(0)
)
3

= 𝑤𝐶1 , which is equivalent to 𝛩𝐷(0) =
𝛩1

√𝑤𝐶1
3

. (5.9) 

Finally, we consider the measured (isobaric) temperature dependences, 𝐶𝑝(𝑇), for higher tem-

peratures, which use to be co-determined by anharmonicity effects. The entire 𝐶𝑝(𝑇) curve, from 

0 up to very high temperatures, can be represented (in analogy to Eq. (4.4)) by an expression of 

the form [11, 26] 

𝐶𝑝(𝑇) = 𝐶𝑉ℎ(∞) ⋅ 𝜅𝑃(𝑇) ⋅ [1 + 𝜅𝑃(𝑇) ⋅ (𝐴1𝑇 + 𝐴2𝑇
2 +⋯)]. (5.10) 

We have performed a complete high-accuracy fit of the combined 𝐶𝑝(𝑇) datasets under study 

[17, 24, 25] for diamond (as shown by the solid curve in Figure 3). As a result of the multi-

parameter least-mean-square fitting process, we have obtained the following values for the effec-

tive Einstein temperatures of the three discrete phonon peaks under consideration:  

𝛩1 =  778.5 K, 𝛩2 =  1108.5 K, and 𝛩3 =  1733.6 K, (5.11a) 

in combination with the weighting factors 

𝑤𝐶1 =  0.04294,𝑤𝐶2 =  0.01425,𝑤1 =  0.06514,𝑤2 =  0.30894,𝑤3 =  0.56872, (5.11b) 

and the associated 𝐴𝑛 coefficients 

𝐴1 =  2.15810−5 K−1 and 𝐴2 =  2.45110−9 K−2. (5.11𝑐) 

The corresponding theoretical 𝐶𝑝(𝑇) curve (up to 5000 K) and the associated 𝜌(𝑇) = 𝐶𝑝(𝑇)/𝑇
3 

dependence is represented by the solid curves (⎯⎯) in Figure 3.  

Furthermore, we have shown above (in Figure 2) the corresponding theoretical 𝛩𝐷(𝑇) and 

𝛩𝐷ℎ(𝑇) dependences, which have been obtained via the given transformation equations ((Eqs. 

(4.1a) and (4.1b)) for the calculated ratios 𝜅(𝑇) → 𝜅𝑃(𝑇) = 𝐶𝑉ℎ(𝑇)/𝐶𝑉ℎ(∞) (Eq. (5.4)) and 
𝜅(𝑇) → 𝐶𝑝(𝑇)/𝐶𝑉ℎ(∞) (Eq. (5.10)), respectively. 

6. Discussion 

Above all, in this paper, we have developed an unprecedented algebraic formula, 𝜅𝐷ℎ
(𝑚𝑃)(𝑥) (Eq. 

(A.12)), for the high-temperature behavior of the Debye function. Using, in particular, a suitably 

truncated version of the latter, 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) (in Eq. (4.5)), we were able to realize a good approach 

to the true 𝐶𝑉ℎ(𝑇 > 𝑇𝑐) dependence for diamond (at least within an interval from about 230 K to 

about 600 K (cf. the dash-double-dot curve for the 𝜌(𝑇) ≈ 𝐶𝑉ℎ(𝑇)/𝑇
3-dependence, in the inset of 

Figure 3). A somewhat closer approach to the true 𝜌(𝑇) behavior within the region 180 K to 230 K 

could be achieved when we used, alternatively, the high-to-low-temperature interpolation formu-

la, 𝜅̃𝐷(𝛩𝐷/𝑇) (Eq. (4.3)), for the fitting. However, it is a matter of principle that the corresponding 
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𝜌𝐷(𝑇) dependence (dash-dot curve) exhibits a plateau (approximate constancy) from 0 up to ap-

proximately 150 K. This typical Debye function feature is, of course, in striking contrast to the well-

known non-Debye behavior (see Eq. (5.1)) of the measured 𝐶𝑝(𝑇) dependences in the correspond-

ing cryogenic regions, 0 < 𝑇 < 𝑇𝑐 ≈ 𝛩𝐷(0)/12. 

6.1 Additional Quantitative Information Implied by the High-accuracy Fit via the Representative 

Hybrid Model 

As described in Section 5, we have performed a very accurate fit, from approximately 20 K up 
to 5000 K (cf. the solid curves in Figure 3), for the whole combination of the partial 𝐶𝑝(𝑇) datasets 

given for low and/or high temperatures [17, 24, 25]. This least-mean-square fit has been realized 

on the basis of the representative hybrid model [10, 11, 26], which is represented here by Eq. 

(5.10) in combination with Eq. (5.4). From the adjusted set of the model-specific parameter values 

(5.11), it follows that the average deviations of the theoretical 𝐶𝑝(𝑇) values from the respective 

experimental points amount to approximately ±0.45%. The unusually small size of these average 

deviations can be considered to be a confirmation of the high quality of the analytical apparatus 

used (in Sec. 5) and also of the experimental datasets [17, 24, 25] considered in this study.  

On the basis of the resulting parameter values (Eq. (5.11)), one can readily evaluate the charac-

teristic quantities associated with the 𝑇 → 0 limiting behavior of the fitted 𝜌(𝑇) and 𝛩𝐷(𝑇) 

curves. Using the first relation in Eq. (5.7), a limiting 𝜌(𝑇 → 0) value of 𝑐3 = 𝜌(0) = 0.17694 

µJK−4 mol−1 (as indicated by a horizontal 𝜌(𝑇 → 0) line in the inset of Figure 3) is obtained. Ac-

cording to the first relation in Eq. (5.8), this 𝑐3-value corresponds to the 𝑇 → 0 limiting value of 

𝛩𝐷(0) ≅ 2223 K (as indicated by a horizontal line in Figure 2). (Note that the same 𝛩𝐷(0) value 

can be obtained using the second relation in Eq. (5.9)). This value is found to be in good agree-

ment with the frequently quoted caloric 𝛩𝐷(0) value of about 2220 K [33–35] for diamond.  

The maximum of the 𝜌(𝑇) curve, 𝜌𝑚𝑎𝑥 = 𝜌(𝑇𝑐) = 0.2995 µJK−4 mol−1, has been found to be lo-

cated at the characteristic point of 𝑇𝑐 =  174 K, in the vicinity of which the corresponding 𝐶𝑝(𝑇) 

the curve shows a certain cubic dependence, 𝐶𝑝(𝑇 ∼ 𝑇𝑐) → 𝜌(𝑇𝑐) ⋅ 𝑇
3. However, the latter is to 

be clearly distinguished from the well-known 𝑇 → 0 (limiting) cubic dependence based on Debye’s 

theory [1], 𝐶𝑉(𝑇 → 0) → 𝑐3𝑇
3 (cf. Eq. (5.1)). The qualitative and quantitative differences between 

these two (local) cubic 𝑇-dependences in the cryogenic region are due to the circumstance that 

the magnitudes of the respective proportionality factors, i.e., 𝜌(𝑇𝑐) in comparison with 𝜌(0) = 𝑐3, 

are markedly different, 𝜌(𝑇𝑐)/𝜌(0) = 1.693. 

Other interesting by-products of the fit via the hybrid model are the moments, 𝜇𝑃
(𝑛)

 (Eq. (5.3)), 

of the underlying theoretical (hybrid) PDOS model spectrum under consideration (see Section 5). 

Of particular interest for an assessment of the degree of phonon dispersion are the first-and sec-

ond-order moments, the magnitudes of which follow from the fitted parameter set (Eq. (5.11)) to 

be 𝜇𝑃
(1)

=  121.795 meV and 𝜇𝑃
(2)

= (126.35 meV)2. Thus, the characteristic dispersion coefficient, 

𝛥𝑃 [36, 37] has a magnitude of 

𝛥𝑃 ≡
√𝜇𝑃

(2)
− (𝜇𝑃

(1)
)2

2

𝜇𝑃
(1)

= 0.276. (6.1) 
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This value is in very good agreement with the earlier values of 𝛥𝑃 =  0.275 ±0.005, which had 

been estimated in previous works [36, 37] on the basis of the calculated PDOS spectra published 

for diamond by four different authors (see Table 1 in [36] and Table 1 in [37]). This 𝛥𝑃-value (Eq. 

(6.1)) indicates an unusually low degree of dispersion since it is only slightly higher than its theo-

retical counterpart implied by Debye’s original (purely quadratic) PDOS model function [1], 

𝑔𝐷(𝜀) =  3𝜀2/𝜀𝐷
3  (for the interval 0 < 𝜀 < 𝜀𝐷). For the first and second-order moments, this sim-

ple model invoked by Debye gives the values 𝜇𝐷
(1)

= (3/4) ⋅ 𝜀𝐷  and 𝜇𝐷
(2)

= (3/5) ⋅ 𝜀𝐷
2. Inserting 

these special 𝜇𝐷
(1)

 and 𝜇𝐷
(2)

 values into the general expression (Eq. (6.1)) for the dispersion coeffi-

cients gives for this conventional model, a magnitude of [26, 37] 

𝛥𝐷 ≡
√𝜇𝐷

(2)
− (𝜇𝐷

(1)
)2

2

𝜇𝐷
(1)

= √
1

15

2

= 0.258199. (6.2) 

Thus, we see that the material-specific magnitude of the dispersion coefficient, 𝛥𝑃 (Eq. (6.1)), 

for diamond is only approximately 7% higher than its model-specific counterpart, 𝛥𝐷 (Eq. (6.2)), 

implied by Debye’s original model [1]. The relatively similar values of 𝛥𝑃 to 𝛥𝐷 is the obvious rea-

son of the relatively good functioning of Debye’s very special heat capacity shape function, 𝜅𝐷(𝑥) 

(Eq. (2.1)), for an approximate description of the 𝐶𝑉ℎ(𝑇 > 𝑇𝑐) dependence (as shown in Figure 3). 

Another important theoretical quantity is the high-temperature limiting (𝑇 →∞) value of the 

Debye temperature for harmonic lattice oscillations, 𝛩𝐷ℎ(𝑇 →∞). This quantity is well-known to 

be connected unambiguously with the second moment, 𝜇𝑃
(2)

, by the equation [26] 

𝛩𝐷ℎ(∞) =
√(
5
3)𝜇𝑃

(2)2

𝑘𝐵
=  1893.0 𝐾. (6.3)

 

The magnitude of this limiting (theoretical) Debye temperature value, 𝛩𝐷ℎ(∞), is indicated in 

Figure 2 by an arrow. 

6.2 Assessment of the Incomplete Fittings by Novel Formulae Involving a Fixed Debye Tempera-

ture 

Taking the high-accuracy fit performed for a diamond based on the representative hybrid mod-

el (in Section 5) into consideration, let us now discuss in more detail the possible practical usability 

of two versions of the unprecedented Debye function formulas displayed in Section 3.  

Firstly, concerning the limited fit of the experimental 𝐶𝑝(𝑇) datasets, from 180 K to 5000 K, 

done using the interpolation formula, 𝜅̃𝐷(𝛩𝐷/𝑇) (Eq. (4.3)), in combination with Eq. (4.4), we are 
concerned with average deviations of ±0.54% between the theoretical and experimental 𝐶𝑝(𝑇) 

values (which are only slightly higher than those associated with the abovementioned fit by the 

hybrid model). Accordingly, the approximate theoretical 𝐶𝑝(𝑇) and 𝜌(𝑇) = 𝐶𝑝(𝑇)/𝑇
3 depend-

ences, which are represented by the dash-dot curves in Figure 3, are almost coinciding, for any 𝑇 > 

180 K, with their counterparts due to the hybrid model (solid curves). The simple model, based on 

the primary interpolation formula (Eq. (3.5)), might thus be of some practical use with respect to 

the materials having similarly low 𝛥𝑃-values, such as diamond (Eq. (6.1)). This interpolation model 



Recent Progress in Materials 2021; 3(4), doi:10.21926/rpm.2104042 
 

Page 21/33 

could, in particular, be of use within the framework of thermo-chemistry, where one is mainly 
interested in fine numerical descriptions of 𝐶𝑝(𝑇) dependences within the high-𝑇 region, T > 

298.15 K. In addition, from the inset of Figure 3, it can be seen that this model, which exhibits a 

low-temperature plateau behavior of the respective, approximate 𝐶𝑝(𝑇)/𝑇
3 function (dash-dot-

curve), is absolutely inapplicable to 𝑇 < 𝑇𝑐 = 174 K. 

With regards to the alternative fit of the experimental 𝐶𝑝(𝑇) datasets, from 230 K to 5000 K, 

via the truncated high-temperature Debye function formula, 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝑥) (Eq. (3.1)),  average de-

viations of ±0.74% between the theoretical and experimental 𝐶𝑝(𝑇) values (being higher by a fac-

tor of approximately 1.6 than those due to the hybrid model) are observed within this limited re-
gion. in addition, we see from the respective, approximate 𝐶𝑝(𝑇)/𝑇

3 function (represented by a 

dash-double-dot curve, in the inset of Figure 3) that this simplified (algebraic) model nevertheless 

provides a relatively close fit (involving underestimation of the experimental values by less than 

8%) in the region from approximately 80 K to 230 K. 

6.3 Sub-quartic Behavior of the Low-temperature Heat Capacity Dependence 

Such a relatively close fit to the actual (experimentally observed) 𝑇-dependence, within a re-

gion of approximately 𝑇𝑐/2 < 𝑇 < 𝑇𝑐, is not surprising in view of the circumstance that the 𝑇-

dependence of the truncated Debye function formula, 𝜅𝐷ℎ
(𝑚𝑃= 4)

(𝛩𝐷/𝑇) (Eq. (3.1)), is tending in the 

𝑇 → 0  limit to a certain (fictive) quartic 𝐶𝑉ℎ(𝑇) -dependence (cf. (Eq. (4.5)), 𝐶𝑉ℎ(𝑇) →

(𝐶𝑉ℎ(∞)/√𝑟8
𝐷2
) ⋅ (𝑇/𝛩𝐷)

4. This peculiar feature is at least in qualitative accordance with the 

global expectation [38], according to which, in the cryogenic region below 𝑇𝑐, the effective expo-

nents, 𝜂, of the power function tangents, 𝐶𝑝(𝑇) ∝ 𝑇𝜂, should range somewhere between 3 and 4 

(for a wide-band-gap material such as diamond; cf. Figure 7 in [38]). In order to estimate the max-

imum value of this exponent, 𝜂𝑚, let us consider for the vicinity of the point of inflexion, 𝑇𝑖 = 99.3 

K, of the fitted 𝜌(𝑇) curve, an approximation by a linear tangent [38], 

𝜌(𝑇 ∼ 𝑇𝑖) → 𝜌(𝑇𝑖) + 𝜌
(1)(𝑇𝑖) ⋅ (𝑇 − 𝑇𝑖) ≡ 𝑑0 + 𝑑1 ⋅ 𝑇, (6.4) 

where 𝑑0 ≡ 𝜌(𝑇𝑖) − 𝜌
(1)(𝑇𝑖) ⋅ 𝑇𝑖 = 0.104745  µJK−4 mol−1 and 𝑑1 = 𝜌(1)(𝑇𝑖)  = 0.13911×10−2 

µJK−5 mol−1 (see the dotted line in the inset of Figure 3). This tangent (Eq. (6.4)) corresponds to 

the local heat capacity dependence in the form of a combination of a cubic with a quartic term 

[38], 

𝐶𝑝(𝑇 ∼ 𝑇𝑖) = 𝜌(𝑇 ∼ 𝑇𝑖) ⋅ 𝑇
3 → 𝑑0 ⋅ 𝑇

3 + 𝑑1 ⋅ 𝑇
4. (6.5) 

Using the general expression [38] for the 𝑇-dependence of the effective power function expo-

nents, 

𝜂(𝑇) =
𝑑log(𝐶𝑝(𝑇))

𝑑log(𝑇)
= (

𝑑𝐶𝑝(𝑇)

𝑑𝑇
) ⋅ (

𝑇

𝐶𝑝(𝑇)
) (6.6) 

from the estimated 𝐶𝑝(𝑇 ∼ 𝑇𝑖) dependence (Eq. (6.5)) we obtain a magnitude of 

𝜂𝑚 = 𝜂(𝑇𝑖) =
3𝑑0𝑇𝑖

3 + 4𝑑1𝑇𝑖
4

𝑑0𝑇𝑖
3 + 𝑑1𝑇𝑖

4 =  3 +
𝑑1𝑇𝑖

𝑑0 + 𝑑1𝑇𝑖
=  3.5687 (6.7) 
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for the effective (maximum) power function exponent in the vicinity of the point of inflection (as 

indicated by a solid triangle in the inset of Figure 3). Thus,  in the case of diamond, we are con-

cerned with a typical sub-quartic behavior of the cryogenic 𝐶𝑝(𝑇) dependence. This is in accord-

ance with our preliminary assessment shown for diamond in Figure 7 of an earlier study [38]. 

6.4 Comparison with a Recently Proposed Multi-Debye-function Model 

Of interest might be a comparison with a recently published model [39] for heat capacity fit-

ting, from cryogenic to high temperatures, on the basis of a certain interpolation model consisting 

of a combination of three Debye function components, for low-temperature regions, with the 

popular (thermo-chemical) Maier-Kelley approximation [40], for high temperatures. Concerning 

the case of diamond, one can see from a comparison, e.g., of the 𝐶𝑉ℎ(𝑇) curve shown in Figure 7 

from an earlier study [39] with the present counterpart (shown by the dashed curve in Figure 3) 

that their behavior appears to be nearly in mutual agreement (within a limited range of 200 K to 

2000 K, at least). At first sight, such approximate equality might appear somewhat surprising since 

one could rather expect more pronounced qualitative and/or quantitative differences between 

the present interpretation in terms of a single Debye function (Eq. 4.3)), for the region from 200 K 

to approximately 600 K, and the numerical simulation by Vassiliev and Taldrik [39], who employed 

a combination of three Debye functions for the same purpose. Yet, an explanation of this peculiar-

ity can be readily given by observing that there are only relatively small differences between the 

individual 𝛩𝐷𝑖  values (𝛩𝐷1, 𝛩𝐷2, and 𝛩𝐷3) estimated by Vassiliev and Taldrik [39] (which are listed, 

together with the respective weighting factors, 𝐴𝑖, e.g., under number 1b in Table 6 of their arti-

cle). The average magnitude, 𝛩̄𝐷 = 𝐴1𝛩𝐷1 + 𝐴2𝛩𝐷2 + 𝐴3𝛩𝐷3, of this set of 𝛩𝐷𝑖  values amounts to 

𝛩̄𝐷= 1896 K. The latter is by only 2.2% higher than our single Debye temperature value of 

𝛩𝐷= 1855 K, which resulted from the present fitting using Eq. (4.2) and/or Eq. (4.5). Furthermore, 

we see that the individual 𝛩𝐷𝑖  values estimated by Vassiliev and Taldrik [39] differ from their aver-

age value, 𝛩̄𝐷, by less than 4%. The relatively small differences between the individual 𝛩𝐷𝑖  values 

provide an explanation for the similar success of our alternative models, which are involving only a 

single effective Debye temperature for the two comparable numerical simulations of the 𝐶𝑝(𝑇 >

𝑇𝑐) data presented in Section 4.  

6.5 Possible Usefulness of a Properly Adopted Non-Debye Interpolation Formula 

Satisfactory numerical fitting to the comprehensive 𝐶𝑝(𝑇) datasets for the high-dispersion 

wide-band-gap materials GaN and ZnO [36, 37], from very low up to high temperatures, had been 

performed for the first time in a previous study [32] on the basis of a novel algebraic non-Debye 

formula. A suitable alternative version of the latter had been displayed and used in another work 

[6] for comprehensive fitting (from liquid-helium temperatures up to the melting points of the 
materials) of the combined 𝐶𝑝(𝑇) datasets, that are available for a series of Group III-V (high-

dispersion [37]) semiconductor materials. 

We have found that an appropriate specialization of the preceding analytical non-Debye model 

[6] with respect to its possible applications to low-dispersion materials, such as diamond, can 

readily be established by adopting an algebraic expression of the interpolation type 



Recent Progress in Materials 2021; 3(4), doi:10.21926/rpm.2104042 
 

Page 23/33 

𝜅𝐷 ;𝑁𝐷(𝑇) =
1 +

𝑐5
𝑐7𝑇2

+
𝑐3
𝑐7𝑇4

√1 + ∑ 𝑟2𝑛
𝐷3

𝑛= 1 (
𝛩𝐷
𝑇 )

2𝑛

+ 𝑟8
𝑁𝐷 (

𝛩𝐷
𝑇 )

8

+ (
𝐶𝑉ℎ(∞)
𝑐7𝑇7

)
22

(6.8)
 

for the isochoric heat capacity shape function (the structure of which is analogous to the structure 

of the original non-Debye heat capacity shape function (A3) considered in [6]). Envisaging Eq. (6.8) 

for calculations of the respective isochoric heat capacities, 

𝐶𝑉ℎ(𝑇) = 𝐶𝑉ℎ(∞) ⋅ 𝜅𝐷 ;𝑁𝐷(𝑇), (6.9) 

we see, on the one hand, that at sufficiently low temperatures, where the contributions of the 

first four ∝ 𝑇−2𝑛 terms (𝑛 = 1 to 4, in the denominator of Eq. (6.8)) are small compared to the 

contribution of the ∝ 𝑇−14 term, the 𝐶𝑉ℎ(𝑇) expression in Eq. (6.9) approaches asymptotically to 

the familiar odd-order Taylor series expansion in Eq. (5.1). On the other hand, at sufficiently high 

temperatures, the numerator tends to unity and the denominator approaches asymptotically to 

the truncated high-temperature expression given by Eq. (4.5). However, a characteristic deviation 

in the latter case is due to the circumstance that the fourth expansion coefficient, 𝑟8
𝑁𝐷 , for the ∝

𝑇−8 term, must be admitted to deviate more or less significantly from its (originally fixed) Debye-

function-related predecessor, 𝑟8
𝐷  (Table 1). This generalization is inevitable for assuring a smooth 

change between the respective asymptotic low-and high-temperature behavior. 

Within the framework of this unprecedented interpolation model, the isobaric heat capacities, 

𝐶𝑝(𝑇), are represented by an analytical function of the usual type: 

𝐶𝑝(𝑇) = 𝐶𝑉ℎ(∞) ⋅ 𝜅𝐷 ;𝑁𝐷(𝑇) ⋅ [1 + 𝜅𝐷 ;𝑁𝐷(𝑇) ⋅ (𝐴1𝑇 + 𝐴2𝑇
2 +⋯)] (6.10) 

(in analogy to Eqs. (4.4) and (5.10)). Performing, tentatively, an alternative fit of the whole 𝐶𝑝(𝑇) 

dataset under study for diamond using Eq. (6.10) (in combination with Eq. (6.8)) we have obtained 

the cryogenic parameter values 𝑐3= 0.17907 µJK−4 mol−1, 𝑐5  = 0.3263110−5 µJK−6 mol−1, and 

𝑐7= 0.4086310−9 µJK−8 mol−1 (cf. [12]) in combination with a fitted non-Debye expansion coeffi-

cient of 𝑟8
𝑁𝐷= 1.862  10−6, an effective Debye temperature of 𝛩𝐷= 1904.8 K, and the associated 

anharmonicity coefficients of 𝐴1= 1.79910−5 K−1 and 𝐴2= 3.278  10−9 K−2. In particular, assessing 

the presently obtained 𝛩𝐷 value, we see that it is by only approximately 0.6% higher than the the-

oretical high-temperature limiting (𝑇 →∞) value of the Debye temperature for harmonic lattice 

oscillations, 𝛩𝐷ℎ(𝑇 →∞) = 1893 K. (cf. Eq. (6.3)). Thus, the unprecedented algebraic model func-

tion of the interpolation type (Eq. (6.10)) appears to offer us a chance of giving, as an important 

by-product of fitting, even the correct order-of-magnitude of the material-specific 𝛩𝐷ℎ(𝑇 →∞) 
values. Furthermore, we see that the fitted magnitude of the Non-Debye expansion coefficient, 

𝑟8
𝑁𝐷 , is a factor of ~3 higher than its preceding counterpart, 𝑟8

𝐷 , due to the original Debye function 

expansion (cf. Table 1). This considerable difference is obviously due to strongly increasing non-

Debye effects in the vicinity of 𝑇𝑐 ≈ 𝛩𝐷(0)/12. 

Concerning the associated estimation of the 𝑇 → 0 limiting value of the Debye temperature, 

we see that the alternatively fitted 𝑐3-value of 𝑐3= 0.17907 µJK−4 mol−1 corresponds (according to 

Eq. (5.8)) to a 𝛩𝐷(0) value of about 2214 K. The latter is approximately 0.3% lower than the ap-
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parently more exact value of 2223 K (as resulting from the refined fit by the hybrid model used for 

the calculations presented in Section 5). Further, we would like to mention that the latter fit via 

the unprecedented algebraic interpolation model function (Eq. (6.10)) implies the maximum value 

of the 𝜌(𝑇) curve to be 𝜌𝑚𝑎𝑥 = 𝜌(𝑇𝑐) = 0.3042 µJK−4 mol−1, (which is by ~1.5% higher than its 

counterpart due to the hybrid model used for the calculations presented in Section 5). The respec-

tive 𝑇𝑐-position of the maximum, 𝜌𝑚𝑎𝑥 = 𝜌(𝑇𝑐), resulting from Eq. (6.10) is located at 𝑇𝑐 ≈ 164 K 

(which is by ~6% lower than the 𝑇𝑐-position estimated via the hybrid model used in Section 5). 
Finally, we would like to mention that the average deviations of the theoretical 𝐶𝑝(𝑇) values re-

sulting from the fit of the experimental points under consideration using Eq. (6.10) (in combina-

tion with Eq. (6.8)), amount to approximately ±1%, which corresponds to the same order of mag-

nitude as the typical experimental uncertainties in the low-temperature region. In view of these 

still moderate deviations between the theoretically fitted and experimental 𝐶𝑝(𝑇) values, one can 

conclude that the latter version (Eq. (6.10), in combination with (6.8)) of an algebraic non-Debye 
interpolation formula can be successfully applied to numerical fittings of comprehensive 𝐶𝑝(𝑇) 

datasets, from the liquid helium region (𝑇 → 0) up to very high temperatures, provided that the 

dispersion coefficient, 𝛥𝑃 (Eq. (6.1)), of a wide-band-gap material under consideration is not signif-

icantly higher than those estimated for diamond and c-BN [36, 37]. 

7. Concluding Remarks 

We have displayed within this study a variety of structurally relatively simple interpolation for-

mulae that are convenient for fitting the measured low-to-high temperature heat capacity da-

tasets of certain wide-band-gap materials that are characterized by a sufficiently low degree of 

phonon dispersion (0.258 < 𝛥𝑃 < 1/3; cf. Eq. (6.1) and (6.2)).  

A characteristic empirical feature of such low-dispersion materials is the quasi-plateau-

behavior of the effective (caloric) Debye temperature, 𝛩𝐷(𝑇), which is observed in T-regions from 

𝛩𝐷(0)/12 up to an order of 𝛩𝐷(0)/3 (cf. Figure 2 for diamond; see also Figure 2 in [19] for c-BN).  

Looking among a larger variety of papers on thermal properties of wide-band gap-materials for 

further potential targets for the applications of the presently developed analytical apparatus, the 

case of MgO [41–44] is the most prominent. Indeed, one can see from the corresponding 𝛩𝐷(𝑇) 

and/or 𝛩𝐷ℎ(𝑇) curves shown in these papers (cf. Figure 2 in [41], Figure 5 in [42], Figure 4 in [43], 

and Figure 3 in [44]) that, after a rapid fall from a 𝑇 → 0 limiting level of 𝛩𝐷(0) ≅ 946 K to a mini-

mum of 𝛩𝐷 𝑚𝑖𝑛 ≈ 750 K (±10 K), the further run from 100 K up to ~700 K takes place at a nearly 

constant Debye temperature of 𝛩𝐷 ≈ 760 K. Thus, it should be possible to describe the corre-

sponding 𝐶𝑝(𝑇) data for MgO, from 100 K up to high temperatures, e.g., by the interpolation for-

mula given by Eq. (4.3) parameterized by an effective Debye temperature of 𝛩𝐷 ≈ 760 K. In con-

trast, the obviously unconsidered choice of the limiting (𝑇 → 0) Debye temperature of 𝛩𝐷(0) 

= 946 K reported in previous studies [45, 46] can hardly be considered as an adequate 𝛩𝐷-value 

for a proper description of the actual 𝐶𝑝(𝑇) dependence of MgO (from the cryogenic region up to 

2100 K). 

Clearly, the arbitrary choice of 𝛩𝐷 → 920 K for ZnO  [45, 46] is also inadequate. This is due to 

the circumstance that the 𝛩𝐷(𝑇) dependence of ZnO shows a very pronounced “snaky” shape (in 

analogy to the typical 𝛩𝐷(𝑇) behavior of semiconductor materials [2–11]). Thus, it is impossible to 

find a certain range in which the Debye temperature would have a chance to be considered as 
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approximately constant. Furthermore, one can readily estimate (via Eqs. (4.1a) and (4.1b)) that the 

whole range of possible 𝛩𝐷ℎ(𝑇) values for ZnO extends from a lower boundary of 𝛩𝐷 𝑚𝑖𝑛 ≈ 350 K 

up to an upper boundary of 𝛩𝐷ℎ(∞) ≈ 690 K. A considerably higher 𝛩𝐷-value, such as 𝛩𝐷 → 920 

K, suggested in previous studies [45, 46], for ZnO, ranges clearly outside the realm of reason. 

One can make a pre-selection of groups of materials, the heat capacities of which should actu-

ally have (or not have) a chance to be reasonably described by the presently developed Debye 

function interpolation formulae, on the basis of their material-specific dispersion coefficients, 𝛥𝑃 

(Eq. (6.2)). On viewing, e.g., a list of the corresponding 𝛥𝑃 values given for a large variety of wide-

band-gap materials (in Table 1 of an earlier study [36]), which had been estimated on the basis of 

various theoretically calculated PDOS spectra, we see that diamond and c-BN are the only two 

materials for which their dispersion coefficients, 𝛥𝑃 ≅ 0.275 ±0.005, are closely approaching the 

Debye’s limiting value of 𝛥𝐷 ≅ 0.258. This is the reason of the actual applicability of the presently 

developed analytical apparatus (see subsections 3.2 and 6.5) to the available 𝐶𝑝(𝑇) datasets for 

these two materials. In contrast, the 𝛥𝑃 values (> 0.35) listed in Table 1 (of Ref. [36]) for all the 

other wide-band-gap-materials under consideration, are throughout > 40% higher than 𝛥𝐷. In par-

ticular, it should be noted that the 𝛥𝑃 values estimated for GaN and ZnO are even a factor of ~2 

higher than 𝛥𝐷. Such large qualitative differences in the actual PDOS spectra versus Debye’s over-

simplified model spectrum are the reason for the strict inapplicability of Debye’s original model 

(based on an invocation of a fixed Debye temperature, 𝛩𝐷 = const.).  

Analogously, we find for a larger variety of typical semiconductor (Group-IV, Group-III-V, and 

Group-II-VI) materials considered  [37] that their material-specific 𝛥𝑃 values are throughout > 60% 

higher than 𝛥𝐷 (cf. Table I in [37]). Such large differences between Debye’s fictive and the actual 

degrees of phonon dispersion automatically exclude the eventual applicability of Debye’s original 

model (invoking a fixed 𝛩𝐷) to these materials. 

On the other hand, by assessing the wealth of theoretically calculated PDOS spectra that are 

shown for a large variety of insulators [47], one can find at least four binary materials having 𝛥𝑃 

values very similar to Debye’s value, 𝛥𝐷 ≅ 0.258. This concerns the two alkaline earth oxides MgO 

(𝛥𝑃 ≈ 0.29) and CaO (𝛥𝑃 ≈ 0.30) as well as the two alkali halides NaF (𝛥𝑃 ≈ 0.28) and NaCl 𝛥𝑃 ≈

 0.30). Thus, it should be possible to directly apply the presently developed analytical apparatus, if 

necessary, to the latter wide-band-gap materials. 

Finally, we would like to point out that of primary importance for numerical simulations of the 
𝐶𝑝(𝑇) datasets available for such low-dispersion materials is the unprecedented interpolation 

formula of the mixed type, 𝜅𝐷 ;𝑁𝐷(𝑇) (Eq. (6.8)), which smoothly combines the characteristic high-

temperature Debye model behavior (Eq. (3.1)) with the qualitatively different limiting low-

temperature non-Debye behavior (Eq. (5.1)). The actual use of this ambiguous heat capacity shape 

function, 𝜅𝐷 ;𝑁𝐷(𝑇), within the frame of the usually considered analytical expression for isobaric 

heat capacities (Eq. (6.10)) provides, as a rule, good numerical simulations for the comprehensive 
𝐶𝑝(𝑇) datasets for any temperature of practical interest, i.e., from the liquid-helium region (in-

cluding the 𝑇 → 0 limit) up to the melting points of the low-dispersion materials. 

The crucial problem of reasonable theoretical interpretation of the measured 𝐶𝑝(𝑇) datasets 

for a large variety of wide-band-gap materials, in combination with an adequate analytical descrip-

tion of the qualitatively different Debye temperature behavior, is intended to be treated in due 

detail in a forthcoming study. 
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Appendix A Alternative Versions of the Infinite Taylor Series Representations for the High-T Be-

havior of the Debye Function Integral 

A useful analytical tool for deriving alternative versions of the Taylor series representations for 

the Debye integral represented by Eq. (2.1) was provided by a general method [23] of infinite Tay-

lor series transformations. Within the present context, the starting point for such transformations 

is given by Debye’s conventional high-T Taylor series expansion, Eq. (2.5), for the Debye integral, 

Eq. (2.1),  

𝜅𝐷ℎ
(𝑚𝐷)(𝑥) =  1 + ∑ 𝑐2𝑚

𝐷 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

(𝐴. 1) 

where the dimensionless (T-dependent) quantity, 𝑥(𝑇), represents the ratio of the Debye temper-

ature versus the lattice temperature, 𝑥 = 𝛩𝐷/𝑇.  

A.1 Exponential Series Representation 

The first application of this method to the Debye function had been made in a previous study 

[22] in the form of the ansatz 

𝑙𝑜𝑔[𝜅𝐷ℎ(𝑥)] = 𝑙𝑜𝑔 [1 + ∑ 𝑐2𝑚
𝐷 ⋅ 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

] ⇄ ∑ 𝑑2𝑚
𝐷 ⋅ 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

. (𝐴. 2) 

The actual values of the corresponding expansion coefficients, 𝑑2𝑚
𝐷 , for the 𝑙𝑜𝑔[𝜅𝐷ℎ(𝑥)] func-

tion, are obtained by using the known series expansion of the logarithmic function, 𝑙𝑜𝑔( 1 + 𝑧) =

𝑧 −
𝑧2

2
+

𝑧3

3
−

𝑧4

4
…, with respect to the compound argument 

𝑧 = ∑ 𝑐2𝑚
𝐷 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

. (𝐴. 3) 

Evaluating the respective expansion coefficients associated with the individual 𝑥2𝑚 power 

terms (occurring in the argument of the logarithmic function), and identifying them with the novel 

(transformed) expansion coefficients, 𝑑2𝑚
𝐷  , we have obtained in previous work [22] the following 

values for the latter: 

𝑑2
𝐷 =

−1

20
, 𝑑4

𝐷 =
3

5600
, 𝑑6

𝐷 =
−17

2268000
, 𝑑8

𝐷 =
3631

27941760000
, 𝑑10

𝐷 =
−11521

4540536000000
. (𝐴. 4) 

(cf. the appendix of [22]). Based on these transformed expansion coefficients (Eq. (A.4)), it was 

possible to represent (in accordance with Eq. (A.2)) the high-T curve section of the Debye function, 

𝜅𝐷ℎ(𝑥) (A.1), in terms of an equivalent (exponential) power series expansion [22], 

𝜅𝐷ℎ
(𝑚𝐷)(𝑥) = exp [ ∑ 𝑑2𝑚

𝐷 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

] . (𝐴. 5) 
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Comparing the sequence of transformed expansion coefficients, 𝑑2𝑚
𝐷  (A.5), with the sequence 

of Debye’s original ones, 𝑐2𝑚
𝐷  (Eq. (2.7)), we see that the signs of both sequences of expansion 

coefficients are alternating, i.e., 𝑑2𝑚
𝐷 = (−1)𝑚|𝑑2𝑚

𝐷 | and 𝑐2𝑚
𝐷 = (−1)𝑚|𝑐2𝑚

𝐷 |. In addition, we find 

that the magnitudes of the novel expansion coefficients, |𝑑2𝑚
𝐷 |, are decreasing more rapidly (with 

increasing order, 2𝑚 = 4, 6, 8,…) than the magnitudes, |𝑐2𝑚
𝐷 |, of Debye’s original high-T expansion 

coefficients. This important feature is the reason for the markedly improved convergence proper-

ties of the novel (exponential) series expansion (A.5) in comparison with Debye’s original one (Eq. 

(2.5)).  

We have shown in Figure 6 of the appendix of an earlier work [22] that, e.g., the deviations of a 

truncated 𝜅𝐷ℎ(𝑥) expression of this exponential type (Eq. (A.5)), 

𝜅𝐷ℎ
(𝑚𝐷= 5)(𝑥) = 𝑒𝑥𝑝 [ ∑ 𝑑2𝑚

𝐷 𝑥2𝑚

𝑚𝐷= 5

𝑚= 1

] , (A. 6) 

from the exact Debye function, 𝜅𝐷(𝑥) (Eq. (2.1)), are smaller than 1% throughout an interval of 

𝑥 = 𝛩𝐷/𝑇 from 0 to ~5. This advantageous feature of Eq. (A.6) already represented significant 

progress in comparison with Debye’s original high-T approximation (Eq. (2.5)). 

A.2 High-Temperature Representation for Reciprocal Debye Function Values 

In the course of the forthcoming analytical studies, we succeeded in establishing a few more 

(structurally different) versions of the high-T representations for the Debye function (Eq. (2.1)), 

which turned out to show even markedly better convergence properties than the exponential one 

sketched above. An interesting example had been presented, firstly, in [11] with respect to the 

reciprocal values, [𝜅𝐷ℎ(𝑥)]
−1, of the 𝜅𝐷ℎ(𝑥) function (Eq. (2.5)). Accordingly we have made, in a 

previous study [11], the alternative ansatz 

[𝜅𝐷ℎ(𝑥)]
−1 = [1 + ∑ 𝑐2𝑚

𝐷 ⋅ 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

]

−1

⇄ 1 + ∑ 𝑐2𝑚
𝐷𝑅 ⋅ 𝑥2𝑚

𝑚𝑅(→∞)

𝑚= 1

. (𝐴. 7) 

In this case, the actual values of the corresponding expansion coefficients, 𝑐2𝑚
𝐷𝑅 , for the 

[𝜅𝐷ℎ(𝑥)]
−1 function have been obtained using the familiar series expansion (1 + 𝑧)−1 = 1 − 𝑧 +

𝑧2 − 𝑧3+. .. (with respect to the compound argument 𝑧 (Eq. (A.3)). Evaluating the respective ex-

pansion coefficients associated with the individual 𝑥2𝑚 power terms (occurring in the argument of 

the (1 + 𝑧)−1 function, Eq. (A.7)), and identifying them with the novel (transformed) expansion 

coefficients, 𝑐2𝑚
𝐷𝑅 , we have obtained, in [11], the following values for the latter: 

𝑐2
𝐷𝑅 = +

1

20
, 𝑐4
𝐷𝑅 = +

1

1400
, 𝑐6
𝐷𝑅 = +

1

648000
, 𝑐8
𝐷𝑅 = −

73

3492720000
,… (A. 8) 

(concerning the values of the subsequent four expansion coefficients, up to an order of 

2𝑚𝑅 =  16, see Table 6 in [11]). Consequently, on the basis of the latter, it was possible to repre-

sent (in accordance with Eq. (A.7)) the high-T curve section, 𝜅𝐷ℎ(𝑥), of the Debye function (2.1)), 

in terms of the reciprocal values of a corresponding Taylor series expansion, 
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𝜅𝐷ℎ
(𝑚𝑅)(𝑥) = [1 + ∑ 𝑐2𝑚

𝐷𝑅𝑥2𝑚

𝑚𝑅(→∞)

𝑚= 1

]

−1

. (𝐴. 9) 

(in agreement with Eq. (A.15) given in [11]). 

It has been shown in Figure 8 of Ref. [11] that the deviations, e.g., of a truncated 𝜅𝐷ℎ
(𝑚𝑅= 5)

(𝑥) 

expansion of the type given by Eq. (A.9) from the exact Debye function, 𝜅𝐷(𝑥) (Eq. (2.1)), are 

smaller than 1% throughout the interval of 𝑥 = 𝛩𝐷/𝑇 values from 0 to ~7. This widening of the 

range of the possible applicability of Eq. (A.9) already represented significant progress over the 

somewhat worse convergence properties of the preceding exponential series representation (Eq. 

(A.5)). This improvement of convergence properties is because the signs of the first three expan-

sion coefficients (A.8) are the same, 𝑐2𝑚= 2,4,6
𝐷𝑅 > 0 (in contrast to the alternating signs of the ex-

pansion coefficients for the exponential series representation, 𝑑2𝑚
𝐷 = (−1)𝑚|𝑑2𝑚

𝐷 |). 

It should be noted that the 𝜅𝐷ℎ
(𝑚𝑅= 8)

(𝑥) version of Eq. (A.9) had been used in [11] for perform-

ing high-precision calculations (accurate to 10 decimal places, within the interval 0 ≤ 𝛩𝐷/𝑇 ≤ 1.6) 

in combination with the usage of the conventional low-T formula 𝜅𝐷𝑙
(𝑛𝐷= 15)

(𝑥) (Eq. (2.2)) for the 

interval 1.6 ≤ 𝛩𝐷/𝑇 ≤ 40 (see the corresponding results for selected 𝜅𝐷(𝑥) values listed in Table 

7 of Ref. [11]). 

A.3 Unprecedented Series Representation for Reciprocal Square-root Debye Function Values  

Another crucial example of a rapidly converging Taylor series expansion which turned out to 

play an especially useful role within the present context, concerns the square of reciprocal values, 

(1/𝜅𝐷ℎ(𝑥))
2, of the 𝜅𝐷ℎ(𝑥) function (A.1). 

Accordingly, we make the alternative ansatz 

(
1

𝜅𝐷ℎ
(𝑚𝐷)(𝑥)

)

2

= [1 + ∑ 𝑐2𝑚
𝐷 ⋅ 𝑥2𝑚

𝑚𝐷(→∞)

𝑚= 1

]

−2

⇄ 1 + ∑ 𝑟2𝑚
𝐷 ⋅ 𝑥2𝑚

𝑚𝑃(→∞)

𝑚= 1

. (A. 10) 

In this case, the actual values of the corresponding expansion coefficients, 𝑟2𝑚
𝐷 , for the 

[𝜅𝐷ℎ
(𝑚𝐷)(𝑥)]

−2

 function have been obtained via the usage of the familiar Taylor series expansion, 

(1 + 𝑧)−2 =  1 − 2𝑧 + 3𝑧2 − 4𝑧3 +⋯ (with respect to the compound argument 𝑧 (Eq. (A.3)). 

Evaluating the respective expansion coefficients associated with the individual 𝑥2𝑚 power terms 

(occurring in the argument of the (1 + 𝑧)−2 function, Eq. (A.10)), and identifying them with the 

novel (transformed) expansion coefficients, 𝑟2𝑚
𝐷 , we have obtained the following values for the 

latter: 

𝑟2
𝐷 =

1

10
, 𝑟4
𝐷 =

11

2800
, 𝑟6
𝐷 =

169

2268000
, 𝑟8
𝐷 =

29

46569600
. (A. 11) 

(The values of the subsequent four expansion coefficients, up to an order of 2𝑚𝑃 =  16, are given 

in Table 1). 
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Consequently, on the basis of the latter coefficients (A.11), it is possible to represent (in ac-

cordance with Eq. (A.10)) the high-T curve section, 𝜅𝐷ℎ(𝑥), of the Debye function (2.1)), in the 

form of the following algebraic expression: 

𝜅𝐷ℎ
(𝑚𝑃)(𝑥) = [1 + ∑ 𝑟2𝑚

𝐷 𝑥2𝑚

𝑚𝑃(→∞)

𝑚= 1

]

−
1
2

. (A. 12) 

The advantageous properties of the latter representation have been visualized and discussed in 

detail in Section 3. 

Here, we have used  the 𝜅𝐷ℎ
(𝑚𝑃= 8)

(𝑥) version of Eq. (A.12) for performing high-precision calcula-

tions (accurate to 13 decimal places) within the interval 0 ≤ 𝛩𝐷/𝑇 ≤ 1.6 (as indicated in the lower 

inset of Figure 1), in combination with the usage of the conventional low-T formula 𝜅𝐷𝑙
(𝑛𝐷= 20)

(𝑥) 

(Eq. (2.2)), for the interval 1.6 ≤ 𝛩𝐷/𝑇 ≤ 40. The corresponding high-accuracy results for selected 

couples of 𝑥 and 𝜅𝐷(𝑥) values are listed in the first and second columns of Table A.1. 

Table A.1 Exemplary high-accuracy Debye function values, 𝜅𝐷(𝑥), for selected magni-

tudes of the ratios 𝛩𝐷/𝑇 = 𝑥. The respective calculations have been performed due to 

a combination of the unprecedented algebraic 𝜅𝐷ℎ
(𝑚𝑃= 8)

(𝑥) expression (Eq. (A.12)), for 

the interval 0 ≤ 𝛩𝐷/𝑇 ≤ 1.6, with Debye’s conventional 𝜅𝐷𝑙
(𝑛𝐷= 20)

(𝑥) expression (Eq. 

(2.2)), for the interval 1.6 ≤ 𝛩𝐷/𝑇 ≤ 45. 

𝑥 𝜅𝐷 𝑥 𝜅𝐷 

0.0 1.0000000000000 5.0 0.3686348236052 

0.1 0.9995001785163 5.5 0.3132547732489 

0.2 0.9980028536196 6.0 0.2655968891118 

0.3 0.9955144242104 6.5 0.2250561623322 

0.4 0.9920454895660 7.0 0.1908564045732 

0.5 0.9876107520997 7.5 0.1621687996561 

0.6 0.9822288833923 8.0 0.1381873778726 

0.7 0.9759223555939 8.5 0.1181717644679 

0.8 0.9687172408144 9.0 0.1014670943813 

0.9 0.9606429815662 9.5 0.08750918665011 

1.0 0.9517321357033 10.0 0.07582100303109 

1.1 0.9420200996034 11.0 0.05773082401767 

1.2 0.9315448135568 12.0 0.04478011684325 

1.3 0.9203464534569 13.0 0.03534728217045 

1.4 0.9084671129423 14.0 0.02835178382569 

1.5 0.8959504801015 15.0 0.02307128730184 

1.6 0.8828415127486 16.0 0.01901817414859 

1.7 0.8691861160978 17.0 0.01585873693470 

1.8 0.8550308264266 18.0 0.01336097601990 

1.9 0.8404225040272 19.0 0.01136091854558 

2.0 0.8254080384125 20.0 0.009740756600705 



Recent Progress in Materials 2021; 3(4), doi:10.21926/rpm.2104042 
 

Page 30/33 

2.2 0.7943467191634 21.0 0.008414505228632 

2.4 0.7622123728484 22.0 0.007318466925930 

2.6 0.7293549759543 23.0 0.006404797366813 

2.8 0.6961028658376 24.0 0.005637096942923 

3.0 0.6627580441524 25.0 0.004987344231027 

3.2 0.6295928775902 26.0 0.004433731486753 

3.4 0.5968481116140 28.0 0.003549893920787 

3.6 0.5647320636983 30.0 0.002886195280232 

3.8 0.5334208309114 32.0 0.002378151635189 

4.0 0.5030593309218 34.0 0.001982680460499 

4.2 0.4737629931905 36.0 0.001670251903847 

4.4 0.4456199252550 38.0 0.001420164616325 

4.6 0.4186933946022 40.0 0.001217613637924 

4.8 0.3930244868678 45.0 0.000855168974784 

Finally, we would like to mention that the presently performed Taylor series transformation in-

dicated in Eq. (A.10), as well as the preceding ones [11, 22] (indicated in Eq. (A.7) and (A.2)), could 

be readily performed (in both directions) within the framework of a representative mathematical 

standard program collection like MAPLE.  
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