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Abstract 

Biomaterials have always been the focus of material scientists and engineers. Titanium and 

its alloys have favorable properties, such as high strength, low density, good corrosion 

resistance, non-toxicity, low elastic modulus, biocompatibility, etc. Thus, Ti alloys have 

received much attention from scientists and engineers who work with biomaterials. Among 

these properties, the elastic modulus is a very important property for implant biomaterials 

because it avoids the “stress shielding” effect. In this study, we summarized low elastic 

modulus titanium alloys, which have great application potential for implant biomaterials. The 

major series of titanium alloys with low elastic modulus, including TiNb-based, TiMo-based, 

and TiZr-based series of titanium alloys, were discussed. The research status and the possible 

factors related to the low elastic modulus of these major titanium alloys were analyzed. Finally, 

the development prospects of the above series of low elastic modulus titanium alloys were 
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compared, and the future direction of low elastic modulus Ti alloys as biomaterials was 

proposed. 
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1. Introduction 

The development of biomaterial science and engineering is very important for humans to enjoy 

a long life. Thus, biomaterials have always been the focus of material scientists and engineers and 

have received much attention. As hard tissue implants, biomaterials should possess high strength, 

a certain degree of plasticity, should be non-toxic, the elastic modulus should be close to that of the 

bone, and should have good biocompatibility. Research and clinical applications have shown that Ti 

and its alloys are the most suitable to be used as hard tissue implant biomaterials [1-3]. Long-term 

experiments and clinical applications have shown that a mismatch of elastic modulus between 

implants and surrounding bones causes a “stress shielding” effect [4-6]. The one with a low elastic 

modulus bears less stress when two materials with different elastic modulus are stressed together. 

Wolff’s law [7] showed that if the bones in the human body are exposed to external pressure for a 

long time, the density and hardness of the bone can increase. Conversely, bones can undergo 

osteoporosis and resorption if they are exposed to low stress or are in a stress-free state for a long 

period. To decrease or avoid such an effect, researchers are committed to developing alloys with a 

low elastic modulus [8-10]. Ti and its alloys are the most studied and the most promising to be used 

as hard tissue implant materials. In recent decades, many Ti alloys have been developed, and some 

have been clinically applied [11, 12]. Interestingly, some porous Ti alloys show a very low elastic 

modulus (0.05 ~ 5.7 GPa) [13]. Some methods have also been developed to prepare the porous Ti 

alloys for biomaterials. The methods that are generally used consist of reverse freeze casting [14], 

dynamic freeze casting [15, 16], HF/HNO3-treatment [13], powder-based additive manufacturing 

[17], etc. 

This study reviewed the advancements in the application of low elastic modulus Ti alloys as a 

type of hard tissue implant biomaterial. The major series of low elastic modulus Ti alloys as implant 

biomaterials, including TiNb-based, TiMo-based, and TiZr-based alloys, were introduced, discussed, 

and compared. This study might be used as a reference for the development of low modulus metallic 

biomaterials.  

2. Early Low Modulus Titanium Alloys for Biomaterials 

In the early stage, stainless steel and Vitallium were used as the major hard tissue implant 

materials [18]. But The elastic modulus of stainless steel is approximately 200 GPa, and that of 

Vitallium is close to 220 GPa [1, 19, 20]. The elastic modulus of these alloys is very high compared 

to that of the bones (10 to 30 GPa) and, thus, might result in a “stress shielding” effect. Among 

common metals, pure Ti has a low elastic modulus of 110 GPa, and the typical commercial titanium 

alloy, Ti-6Al-4V (TC4), also has a similar elastic modulus and higher strength. Thus, pure Ti and the 

TC4 alloy are the major Ti alloys that are used in the early application stage as hard tissue implant 
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biomaterials [11, 21]. Besides these Ti alloys, the Ti-6Al-7Nb [22], Ti-28Nb-7Al [23], and Ti-15Nb-

25Zr-8Fe [24] alloys were also developed and can be used as an implanted biomaterial. However, 

clinical applications have shown that elements Al [25, 26] and V [27-29] have some side effects on 

the human body. Hence, the toxicity, negative effects, cell activity, and other biocompatibilities of 

alloying elements are taken seriously [30-32]. Steineman and Kawahar summarized the toxicity and 

biocompatibility of various metals (see Figure 1) [33, 34]. Besides Ti, elements such as Zr, Nb, Ta, Sn, 

Pa, Mo, etc., also have favorable biocompatibility and are suitable for being used as alloying 

elements for bio-Ti alloys.  

 

Figure 1 The biocompatibility of common metals and alloys: (a) toxicity and (b) 

polarization resistance vs. biocompatibility. 

3. TiZr-based Low Elastic Modulus Ti Alloys for Biomaterials 

Due to toxicity and negative effects, researchers have realized the importance of the 

development of low elastic modulus Ti alloys with compatible elements. Many studies have 

suggested that metastable beta Ti alloys should have a low elastic modulus [8, 35, 36]. Nb is a non-

toxic and typical beta stabilizer. Thus, Nb is preferred for developing low elastic modulus Ti alloys. 

Many researchers have investigated low elastic modulus TiNb-based alloys for bio-applications. The 

main TiNb-based alloys without toxic elements and their elastic modulus are shown in Table 1 [37-

41], Table 2 [12, 42-53], and Table 3 [12, 43-45, 50, 54-66] based on the number of components. 

Based on Table 1, the elastic modulus of bulk Ti-Nb binary alloys like Ti-38Nb, Ti-40Nb, and Ti-45Nb 

is over 55 GPa. However, that is low to 25 GPa for microporous Ti-35Nb binary alloy and an amazing 

low value to 2.6 GPa for macroporous Ti-35Nb. The addition of one more alloying element in ternary 

TiNb-based alloys results in an elastic modulus close to the upper limit of biological bones (~30 GPa). 

Especially, the elastic modulus of bulk Ti-19Nb-14Zr ternary alloy is as low as 14 GPa, which is similar 

to that of most bones. According to the strengthening theory, the addition of alloying element can 

strengthen alloys. Thus, the multi-component TiNb-based alloys could have both low elastic 

modulus and high strength. As shown in Table 3, the bulk multi-component TiNb-based alloys have 

elastic modulus close to that of the bones. The elastic modulus of porous Ti-35Nb-2Ta-3Zr alloys is 

as low as 3.1 GPa. Thus, the TiNb-based alloys can have an elastic modulus similar to that of bones. 
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These elastic moduli can be adjusted across a wide range of values to meet the different 

requirements. Overall, the porous TiNb-based alloys can have a lower elastic modulus than the bulk 

ones. However, the low strength can limit the application of porous alloys as hard tissue implants 

[67].  

Table 1 The major low elastic modulus Ti-Nb binary alloys. 

Alloys E, GPa Ref. 

Ti-45Nb 57 [37] 

Ti-38Nb 56.0 [38] 

Ti-40Nb 60.0 [39] 

Ti-40Nb (Porous) 33 [40] 

Ti-35Nb (Microporous) 25.0 [41] 

Ti-35Nb (Macroporous) 2.6 [41] 

Table 2 The major low elastic modulus TiNb-based ternary alloys. 

Alloys E, GPa Ref. Alloys E, GPa Ref. 

Ti-16.6Nb-10.6Sn 80.0  [43] Ti-25Nb-25Ta 55.0  [47] 

Ti-13Nb-13Zr 80.0  [43] Ti66Nb26Mo8(at%) 54.5  [48] 

Ti-21.1Nb-10.4Sn 75.0  [12] Ti-38.1Nb-12.1Mo 54.5  [12] 

Ti-39.9Nb-3.2Mo 67.0  [12] Ti-(18-20)Nb-(5-6)Zr 45.0  [49] 

Ti-41.1Nb-7.1Zr 65.0  [44] Ti-35Nb-4Sn 44.0  [50] 

Ti-39.3Nb-6.3Mo 63.6  [12] (Ti-35Nb)-4Sn (rolling) 42.0  [45] 

Ti-29Nb-13Ta 62.0  [43] Ti-33Nb-4Sn 36.0  [51] 

(Ti-35Nb)-7Sn (solution) 62.0  [45] Ti-23Nb-7Zr 35.9  [52] 

Ti-25.4Nb-10.1Sn 62.0  [12] Ti-28Nb-7Zr 29.1  [52] 

Ti75Nb20Sn5 (at%) 61.0  [46] Ti-33Nb-7Zr 29.0  [52] 

Ti-30.8Nb-9.8Sn 61.0  [12] Ti-19Nb-14Zr 14.0  [42] 

Ti-38.7Nb-9.2Mo 55.7  [12] Ti-(18-20)Nb-(5-6)Zr 

(Porous) 
3.7  [49] 

(Ti-35Nb)-4Sn (solution) 55.0  [45] Ti-Nb-Zr (Porous) 0.1-2.0 [53] 

Table 3 The major low elastic modulus TiNb-based multi-component (≥4) alloys. 

Alloys E, GPa Ref. Alloys E, GPa Ref. 

Ti-29Nb-2Mo-6Zr 76.36 [54] Ti-9.7Nb-9.5Zr-5Mo-6.2Sn 54.0  [58] 

Ti-25Nb-2Ta-3Zr 75.2  [12] Ti-14.6Nb-5.7Zr-9.9Sn-5.5Ta 52.2  [58] 

Ti-16.6Nb-4.9Mo -2Sn-9.2Ta 73.0  [57] Ti-35Nb-2Ta-3Zr 52.0  [12] 

Ti-18.5Nb-9.1Zr-4.8Mo-5.9Sn 72.0  [58] Ti-24Nb-4Zr-7.5Sn 52.0  [56] 

Ti-35Nb-5Ta-7Zr-0.4O 66.0  [59] Ti-29Nb-11Ta-5Zr  50.0  [43] 

Ti-29Nb-7Zr-0.7O 65.0 [65] Ti-29Nb-13Ta-4Mo 50.0  [43] 
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Ti-29Nb-13Ta-6Sn 65.0  [43] Ti-20.5Nb-4.5Ta-5.1Zr  50.0  [12] 

Ti-25Nb-2Mo-4Sn 65.0  [50] Ti-29Nb-13Ta-4.6Zr 50.0  [43] 

Ti-29Nb-13Ta-4.5Zr 65.0  [55] Ti-4.9Nb-5Mo -9.5Zr-6.2Sn-

9.4Ta 

49.0  [57] 

Ti-35.3Nb-5.7Ta-7.3Zr-0.25Si 65.0  [60] Ti-23.2Nb-9.2Zr-5.7Sn 48.7  [50] 

Ti-35.3Nb-7.1Zr-5.1Ta 63.0  [44] Ti-29Nb-13Ta-2Sn  48.0  [43] 

Ti-34Nb-2Ta-3Zr-0.5O 63.0 [64] Ti-24.2Nb-2Ta-5.1Zr 48.0  [12] 

Ti-35.3Nb-5.7Ta-7.3Zr 63.0  [60] Ti-10.2Nb-10Zr-5.3Mo-6.5Sn 48.0  [58] 

Ti-35Nb-7Zr-5Ta 63.0 [66] Ti-32.5Nb-6.8Zr-2.7Sn 47.1  [12] 

Ti-29Nb-13Ta-5Zr 60.0  [50] Ti-16Nb-13Ta-4Mo 47.0  [43] 

Ti-9.9Nb-4.9Zr-5.1Mo-6.3Sn 59.0  [58] Ti-21.2Nb-4.2Zr-5.4Sn-8.2Ta 47.0  [57] 

Ti-40Nb-2Ta-3Zr 57.8  [12] Ti-29Nb-13Ta-2Sn 46.0  [50] 

Ti-30Nb-2Ta-3Zr 57.1  [12] Ti-13.5Nb-2.8Mo -4.4Zr-8Sn-

8.8Ta 

46.0  [57] 

Ti-35Nb-5.7Ta-7.2Zr 57.0  [50] Ti-31Nb-6Zr-5Mo 44.0  [62] 

Ti-14.2Nb-9.3Zr-4.9Mo-6Sn 56.0  [58] Ti-29Nb-6Ta-5Zr 43.0  [50] 

Ti-17.4Nb-8.1Ta-3.4Zr  55.3  [12] Ti-11.6Nb-11.4Zr-12.0Sn 42.4  [45] 

Ti-29Nb-13Ta-7.1Zr 55.0  [50] Ti-24Nb-4Zr-8Sn 42 [12] 

Ti-35Nb-7Zr-5Ta 55.0  [12] Ti-35Nb-7Zr-5Ta-0.35O 

 

41 [63] 

Ti-15.2Nb-5Zr-5.3Mo-6.5Sn 55.0  [58] Ti-24Nb-4Zr-7.9Sn 33.0  [50] 

Ti-29Nb-13Ta-4.6Sn 54.0  [43] Ti-35Nb-2Ta-3Zr (Porous) 3.1  [61] 

4. Major Low Elastic Modulus TiMo-based Alloys for Biomaterials 

Besides Nb, Mo is another major alloying element to produce low elastic modulus Ti alloys for 

implant biomaterials. Mo is a typical beta stabilizer for Ti alloys. Many researchers have used the 

Mo equivalent to design and develop various Ti alloys containing low modulus Ti alloys for different 

purposes [68, 69]. The major low elastic modulus of TiMo-based alloys and their modulus are listed 

in Table 4 [43, 50, 55, 70-81]. The effect of Mo on biocompatibility and cell activity is controversial 

(Figure 1). Thus, the number of developed low elastic modulus TiMo-based alloys is considerably 

lesser than that of TiNb-based alloys. The elastic modulus of bulk Ti-Mo binary alloys is higher than 

50 GPa, and the lowest modulus of reported bulk Ti-Mo binary alloys is 55 GPa, as shown in Table 

4. Like TiNb-based alloys, the porous TiMo-based alloys also have a very low elastic modulus. The 

porous Ti-10Mo alloy has a very low modulus of 6.4 GPa, which is lower than that of most bones 

(4~30). The elastic modulus of TiMo-based alloys also can be regulated and decreased by adding 

other alloying elements, such as Nb, Zr, Si, Sn, etc. A series of Ti-Mo-Si-Zr alloys have an elastic 

modulus near the upper limit of biological bones (30 GPa). The lowest elastic modulus of the 

reported Ti-10Mo-1.25Si-4Zr alloy is 23.1 GPa. Compared to the composition of TiNb-based and 

TiMo-based alloys, the addition of Mo in low elastic modulus TiMo-based alloys is mostly below 15 

wt.%, but the Nb content in low elastic modulus TiNb-based alloys can reach up to 40 wt.%. Previous 

studies [8, 35, 36] have shown that metastable beta Ti alloys have the lowest elastic modulus. The 

coefficient of Nb in the Mo equivalent formula is only 0.28 [12]. This indicates that the stabilization 

effect of 1 wt.% Mo to beta Ti phase is equivalent to approximately 3.5 wt.% Nb. Thus, the required 

Mo content is lesser than that of Nb.  

Table 4 The low elastic modulus TiMo-based alloys. 
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Alloys E, GPa Ref. Alloys E, GPa Ref. 

Ti-12Mo-8Nb 103.0  [74] Ti-11.1Mo-10.8Nb 56.9  [73] 

Ti-6Mo-6Nb-12Sn 88.0  [71] Ti-7.5Mo 55.0  [75] 

Ti-3.2Mo 83.8  [76] Ti-8Mo-4Nb-5Zr 52.0  [71] 

Ti-8Mo 83.0  [76] Ti-9Mo 38 [81] 

Ti-15Mo-2.8Nb-0.2Si-0.26O 80.0  [43] Ti-5.5Mo-8Al-6Zr 

(mol.%, 98% rolled) 

36 [80] 

Ti-12Mo-5Ta 74.0  [50] Ti-8Mo-4Nb-2Zr 35.0  [71] 

Ti-8Mo-6Nb-4Zr 72.0  [71] Ti-10Mo-1.25Si-13Zr 32.6  [77] 

Ti-15Mo 71.0  [55] Ti-10Mo-1.25Si-7Zr 29.5  [77] 

Ti-9.2Mo-26.7Nb 71.0  [73] Ti-10Mo-1.25Si-10Zr 28.4  [77] 

Ti-15.05Mo 70.0  [70] Ti-10Mo-1.25Si-4Zr 23.1  [77] 

Ti-8Mo-5Nb-3Zr 69.0  [71] Ti-10Mo-5Fe (Porous) 16 [79] 

Ti-12Mo-5Zr 64.0  [72] Ti-10Mo (Porous) 6.4  [78] 

Ti-10.2Mo-19.5Nb 63.0  [73]    

5. TiZr-based Low Modulus Ti Alloys for Biomaterials 

The elements Zr and Ti belong to the same group in the periodic table. Hence, they have similar 

physical and chemical properties. Some researchers have studied the effects of Zr addition on the 

phase transformation, microstructure, and properties of Ti and its alloys and developed some TiZr-

based alloys with high strength and toughness [82-85]. As a neutral element of Ti and its alloys, the 

addition of Zr has a weak stabilizing effect on the beta phase of Ti and its alloys. However, when the 

content of Zr exceeds 10%, it has a stabilizing effect on the beta phase of Ti alloys [86]. Zr is also an 

alloying element with good biocompatibility. Therefore, many researchers have studied TiZr-based 

biomedical alloys, and many alloys with a low elastic modulus have been obtained from this series 

of elements, as presented in Table 5 [50, 57, 87-102]. When only a small amount of the alloying 

elements is added, the elastic modulus of TiZr-based alloys does not decrease much. For example, 

the elastic modulus of Ti-6Zr-xFe (x = 4 to 7) alloys exceeds 90 GPa. With an increase in the content 

of the alloying element, the elastic modulus of TiZr-based alloys decreases gradually. The Ti-30Zr-

5Al-3V alloy has the lowest elastic modulus of 34 GPa of the reported bulk TiZr-based alloys. 

Similarly, when a TiZr-based alloy is prepared in a porous material, its elastic modulus can be 

reduced to 5 GPa. Therefore, the elastic modulus of this series of alloys can also be close to that of 

the bone. Thus, TiZr-based alloys have a great potential for being used as implant biomaterials. 

Table 5 The major low elastic modulus TiZr-based alloys. 

Alloys E, GPa Ref. Alloys E, GPa Ref. 

Ti-6Zr-7Fe 94 [87] Ti-30Zr-5Cr 66.6 [88] 

Ti-6Zr-5Fe 93 [87] Ti-30Zr-2Cr-4Mo 64.2 [88] 

Ti-6Zr-6Fe 93 [87] Ti-30Zr-6Mo 60 [89] 

Ti-6Zr-4Fe 90 [87] Ti-15Zr-5Cr-2Al 58 [92] 

Ti-15Zr 82 [90] Ti-12Zr -5.3Mo-8.1Nb-6.5Sn 58 [57] 

Ti-15Zr-10Cr 78 [91] Ti-5.3Mo-5.1Nb-15Zr-6.5Sn 56 [57] 
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Ti-18.7Zr-9.6Nb-9.8Sn 77.2 [57] TiZrNb 52 [94] 

Ti34Zr52Nb14 76.5 [93] Ti-10Zr-5Ta-5Nb 51.97 [50] 

Ti-13Zr-13Nb-13Ag 75 [95] Ti-50Zr-5Al-4V 45 [98] 

Ti-16.1Zr-15.3Nb-6.1Sn 72 [96] Ti-12Zr-12Nb-12Sn 42 [96] 

Ti-30Zr-4Cr 69.4 [88] Ti-18Zr-5Nb-3Sn-2.5Mo 40 [99] 

Ti-30Zr-1Cr-5Mo 69.1 [88] Ti-38Zr-11Nb 38.8 [100] 

Ti-11.6Zr-5.7Nb-11.8Sn-5.3Mo 68.8 [96] Ti-30Zr-5Al-3V 34 [101] 

Ti-30Zr-3Cr-3Mo 68.5 [88] Ti-13Zr-13Ta-3Nb (Porous) 5 [102] 

Ti-30Zr-34Nb 67.9 [97]    

Besides the above TiNb-based, TiMo-based, and TiZr-based titanium alloys, some other Ti-based 

alloys with a low elastic modulus have also been developed through composition design and process 

adjustment, such as the TiCr-based series [103-105], the TiFe-based series [106-108], the TiCu-based 

series [109, 110], etc. However, these alloys contain some alloying elements with toxic and negative 

effects. Therefore, they are not used as implanted biomaterials and are not described here.  

By comparing the abovementioned series of Ti alloys with a low elastic modulus, it is evident that 

although all three series of Ti alloys have a very low elastic modulus showing a great application 

potential as implant biomaterials, the TiNb-based alloy series is the most preferred. Furthermore, 

the elastic modulus of all Ti alloys can be decreased dramatically to even lower than the elastic 

modulus of bones by producing them in porous materials using special methods like additive 

manufacturing [111], electron beam melting [112], and selective laser melting [113]. The properties 

of porous Ti alloys, including elastic modulus, are affected by parameters of pores [114] such as size, 

porosity, shape, etc. 

6. Summary and Future 

This study summarized low elastic modulus titanium with great application potential as implant 

biomaterials. The study mainly introduced the major series of titanium alloys with a low elastic 

modulus, including the TiNb-based, TiMo-based, and TiZr-based series of titanium alloys. The 

research status and possible factors of the low elastic modulus of these major titanium alloys were 

analyzed. Finally, the development prospects of the abovementioned series of low elastic modulus 

titanium alloys were compared. Several low elastic modulus titanium alloys have been developed 

to be used as implant biomaterials. However, most of these studies are still in the experimental 

stage. Thus, practical clinical applications need time. The development of low elastic modulus 

titanium alloys should mainly focus on the promotion of the clinical application of some titanium 

alloys with a low elastic modulus and stable performance. Especially, some advanced methods, such 

as additive manufacturing, electron beam melting, and selective laser melting, need to be 

developed for optimizing the properties and promoting the application of porous Ti alloys with a 

favorable low elastic modulus.  
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