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Abstract 

The spin-statistics theorem is generalized to include quantum entanglement. Specifically, 

within the context of spin entanglement, we prove that isotropically spin-correlated (ISC) 

states must occur in pairs. This pairing process can be composed of parallel or anti-parallel 

states. Consequently, the article proposes using ISC states as a unifying principle to explain 

better Bose-Einstein condensates, the theory of superconductivity, and molecular and atomic 

orbitals, all of which involve a pairing process. The theoretical framework is established in 

sections 1 and 2. The other qualitative sections focus primarily on the experimental evidence 

to support the theory. 
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1. Introduction 

This article proposes a unifying principle associated with rotationally invariant quantum states 

that brings together Bose-Einstein condensates (BEC), superconductors, and molecular bonds, all 

studied in Solid State Physics. We start by exploring the notion of an isotropically spin-correlated 

state (ISC), first introduced in [1-5], and use it to derive not only the Pauli exclusion principle but 

also better to understand para-statistics, Cooper pairs, and molecular orbitals. Before doing so, we 

note that ISC states are entangled, but not all are ISC states. More formally, if ℋ = ℋ1 ⊗. . .⊗ ℋ𝑛 

is a Hilbert space then |𝜓⟩ ∈ ℋ  is not entangled if |𝜓⟩ = |𝜓⟩1|𝜓⟩2 … |𝜓⟩𝑛 . This means that an 

unentangled state can be written as a tensor product of 𝑛 factors. Otherwise, |𝜓⟩ ∈ ℋ is said to be 

entangled. There are different graduations of entanglement based on the various degrees of 

factorization and the quality of the superimposed states. The interested reader is also referred to 

Wootters et al.’s article [6] for a more detailed discussion of the relationship between pure and 

mixed states in a bipartite system (𝑛 = 2). As noted there, “a pure state is entangled or nonlocal if 

and only if its state vector Γ cannot be expressed as a product Γ1 ⊗ Γ2 of pure states of its parts,” 

which is in agreement with [7]. Conversely, if it can be factored as a product Γ1 ⊗ Γ2 then it is not 

entangled, which coincides with the formal definition given above. Finally, we note that the concept 

of concurrence developed by Woootter et al. as a measure of pure and mixed entanglement is 

defined with respect to the Bell basis. As it turns out this Bell basis coincides with the ISC defined 

below. Indeed, for this article, we are interested only in the form of entanglement associated with 

ISC states. 

To motivate the formal definition of an ISC state consider the two states. 

|𝜓1⟩ =
1

√2
(| + −⟩ − |−+⟩) and |𝜓2⟩ =

1

√2
(| + +⟩ + |−−⟩), (1) 

where |+⟩ = (
1
0

) and |−⟩ = (
0
1

) correspond to spin-up and spin-down, respectively. Sometimes it 

will be convenient to drop the normalizing factor 
1

√2
 in which case we write 

|𝐞1⟩ = | + −⟩ − | − +⟩ and |𝐞2⟩ = | + +⟩ + | − −⟩. (2) 

In most of the discussion that follows, the |𝜓𝑖⟩ and |𝐞𝑖⟩ are interchangeable. 

In the case of the rotation matrix 

𝑅(𝜃) = (
cos𝜃 sin𝜃

−sin𝜃 cos𝜃
), 

direct multiplication gives 

𝑅(𝜃) ⊗ 𝑅(𝜃)|𝜓1⟩ = |𝜓1⟩ and 𝑅(𝜃) ⊗ 𝑅(𝜃)|𝜓2⟩ = |𝜓2⟩. (3) 

In other words, the states |𝜓1⟩ and |𝜓2⟩ are rotationally invariant.1 

                                                        

1  Note that if instead of working with |𝜓1⟩ , |𝜓2⟩ , we were to define |𝜙1⟩ =
1

√2
(|+ −⟩ + |− +⟩)  and |𝜙2⟩ =

1

√2
(|+ +⟩ − |− −⟩), we would find that 𝑅(𝜃) ⊗ 𝑅𝑇(𝜃)|𝜙1⟩ = |𝜙1⟩ and 𝑅(𝜃) ⊗ 𝑅𝑇(𝜃)|𝜙2⟩ = |𝜙2⟩, where 𝑇 refers to 
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Also, in the case of each of these states, if a measurement is made on one of the components in 

an arbitrary direction then instantaneously, because of the rotational invariance and the perfect 

correlation between the two components, we can predict the outcome of a spin measurement on 

the second component in the same direction. For this reason, we say that |𝜓1⟩  and |𝜓2⟩  are 

isotropically spin-correlated states (ISC) and in that regard, note that the superimposed state |𝜓1⟩ +

|𝜓2⟩ is also rotationally invariant but not ISC. In addition, |𝜓1⟩ is invariant not only under rotations 

but also under the action of any matrix 𝑀 ∈ 𝑆𝐿(2, 𝒞). 

As it turns out |𝜓1⟩ and |𝜓2⟩ are (up to a scalar) the only ISC states and therefore, we will restrict 

our use of the term ISC to either |𝜓1⟩ or |𝜓2⟩ taken separately. For this reason, they will play a vital 

role in the following theory, in that both of these states lay the foundation for the theory of 

superconductivity, Bose-Einstein condensates, and molecular bonding in chemistry. Indeed, in a 

certain way, each of these topics is a theme variation. 

We now set above proving the uniqueness of these two ISC states. It should also be noted that 

the correlation among the states is broken once a measurement is performed on the paired ISC 

states. 

Definition 1. More formally, 𝑛 electrons are said to be isotropically spin-correlated (ISC), if a 

measurement made in an arbitrary direction on one of the particles allows us to predict with 

certainty the spin value of each of the other 𝑛 − 1 particles for the same direction. 

Remark 1. Note that this is a special case of a perfectly correlated state (often called a GHZ state, 

see appendix). Our objective is to show that apart from 𝑛 = 2, GHZ states are not in general ISC, 

which imposes a stronger condition than the perfert correlations that define GHZ states. 

Theorem 1. |𝜓1⟩ and |𝜓2⟩ are the only ISC states up to isomorphism. 

Essentially, it is sufficient to show that ISC states exist only for 𝑛 = 2. In other words, if we were 

to assume that three particles could co-exist in an ISC state, this assumption would lead to a 

mathematical contradiction. It also follows that the impossibility of three ISC particles excludes the 

possibility of 𝑛 ≥ 3 ISC particles. 

Proof. Assume that there is an ISC state |𝜓⟩ for 𝑛 = 3, of the form  

|𝜓⟩ =
1

√2
[|+⟩|+⟩|+⟩ − |−⟩|−⟩|−⟩. (4) 

Without loss of generality, if three ISC particles share a common state then we expect to observe 

either (+, +, +) or (−, −, −), if measurements are made in the same arbitrary direction. This means 

that if we associate the observed spin value 𝑠𝑖  with a direction 𝐚𝑖  then 𝑃(𝑠𝑖 = (+, +, +)) =

𝑃(𝑠𝑖 = (−, −, −)) = 1/2 . Moreover, if we assume (see Figure 1) that a measurement in the 

direction of the vector 𝐚𝑖 yields the spin values (+, +, +), it also means that if we observe + on one 

particle, then we know from the definition of the ISC state that the same + value would be observed 

if a measurement were made in the same direction on the other two. However, it is not necessary 

                                                        

the transpose of the matrix. In other words, there is a duality principle at work which defines a 1 ↔ 1 relation between 
|𝜓𝑖⟩ and |𝜙𝑖⟩. For example, if we were to define ISC states in terms of invariance under 𝑅(𝜃) ⊗ 𝑅𝑇(𝜃) then by duality, 
we could apply Theorem 1 to |𝜙1⟩, |𝜙2⟩. In this article we will work primarily with |𝜓1⟩ and |𝜓2⟩. A comprehensive 
discussion of this duality would require another paper. 
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to actually perform a second observation. In practise, we choose to make the measurement only on 

one particle, since by definition of an ISC state, the single measurement yields information about 

the other two. In this way, we do not interfere directly with the two non-measured particles. 

Consequently, we are free to make three independent measurements in arbitrary directions 𝐚1, 

𝐚2and 𝐚3, one on each of the remaining two ISC particles. For convenience, we identify the direction 

𝐚1 with the 𝑥-axis and define the 𝑧 axis as a direction orthogonal to 𝑥. We will perform further spin 

measurements in the 𝑥 − 𝑧 plane. Although we know a given particle spin to be |+⟩ along the 𝑥 

axis, a subsequent spin measurement along the 𝑧  axis of the apparatus gives 
1

2
 probability of 

measuring |−⟩. In general in the case of subatomic particles like electrons or protons2, a spin 

measurement in the direction 𝐚 means that the S-G device subtends an angle 2𝜃 with respect to 

the 𝑥 axis. Moreover, given that the state |+⟩ has been observed with respect to the 𝑥 axis, then 

the anticipated state in the direction 𝐚 can be constructed from the rotation 𝑅  and is given by 

𝑅|+⟩ = cos𝜃|+⟩ − sin𝜃|−⟩, and the probability of measuring |+⟩ on the second particle in the 

direction 𝐚 (for the subtended angle 2𝜃) is cos2𝜃 and of measuring |−⟩ is sin2𝜃. Therefore, before 

actually doing any measurements or observations, we can construct a joint probability measure of 

the spin with respect to any two directions 𝐚𝑖  and 𝐚𝑗  such that 𝑃𝑖𝑗(+, +) =
1

2
cos2𝜃  and 

𝑃𝑖𝑗(+, −) =
1

2
sin2𝜃 . Similarly, for the ket |−⟩ , 𝑅|−⟩ = sin𝜃|+⟩ + cos𝜃|−⟩  and the joint 

probabilities are 𝑃𝑖𝑗(−, −) =
1

2
cos2𝜃  and 𝑃𝑖𝑗(−, +) =

1

2
sin2𝜃 . In principle, if three ISC particles 

exist, a sequence of spin-correlated measurements in the directions (𝐚1, 𝐚2, 𝐚3) (for the subtended 

angles 2𝜃1,  2𝜃2,  2𝜃3 ) can be performed on the three entangled particles. Let 

(𝑠1(𝜃1), 𝑠2(𝜃2), 𝑠3(𝜃3))  represent each particle’s observed spin values in the three different 

directions. Recall that the above-stated spin correlation implies that if any particle is measured to 

be in the 𝑠𝑖(𝜃𝑖) = |+⟩ spin state, the probability of measuring another particle in the 𝑠𝑗(𝜃𝑗) = |−⟩ 

spin-state becomes 
1

2
sin2(𝜃𝑗 − 𝜃𝑖). 

 

Figure 1 Stern-Gerlach measurements in three directions on three ISC particles. 

                                                        

2 Because of the nature of Stern-Gerlach experiments, orthogonal states are distinguished experimentally by rotations 
of 180° while mathematically they are distinguished by 90° rotations. Hence, a measurement in the direction 𝐚 can be 
associated with the angles (2𝜃, 𝜃), where 2𝜃 correspond to the orientation of the magnetic field with respect to the 𝑥-
axis, and 𝜃 will correspond to the value inserted into the rotation matrix in order to calculate the proper superimposed 
state. However, in the case of photons passing through a polarimeter, a 90° rotation is also an orthogonal state, and 
there is no need to associate 2𝜃 with 𝜃. In this case, we work with the same angle. The proof can be adjusted accordingly 
to cater for photons. 
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Given that 𝑠𝑖(𝜃𝑖) = |±⟩ for each 𝑖, there exist only two possible values for each measurement, 

which we associate with “spin-up” and “spin-down” respectively. Hence, for three measurements 

in three arbitrary directions (𝐚1, 𝐚2, 𝐚3) there are a total of 8 possible outcomes given by3: 

𝑆 = {(+, +, +), (+, +, −), (+, −, +), (−, +, +), (+, −, −), (−, +, −), (−, −, +), (−, −, −)}. (5) 

In particular, 

{(+, +, −), (+, −, −)} ⊂ {(+, +, −), (+, −, −), (−, +, −), (+, −, +)} (6) 

implies the following probability relationship: 

𝑃{(+, +, −), (+, −, −)} ≤ 𝑃{(+, +, −), (+, −, −), (−, +, −), (+, −, +)}. (7) 

Since there are only two possible outcomes for the measurement of spin, then on summing over 

the second entry in the coordinates, the left-hand side of (7), can be rewritten as 

𝑃{(+, +, −), (+, −, −)} = 𝑃{(+, . , −)} =
1

2
sin2(𝜃3 − 𝜃1). 

Similarly, the right-hand side of (6) can be decomposed into the state {(+, +, −), (−, +, −)} ∪

{(+, −, −), (+, −, +)} from which it then follows that the right-hand side of (7) can be rewritten as 

𝑃{(+, +, −), (+, −, −), (−, +, −), (+, −, +) = P{(+, +, −), (−, +, −)} + P{(+, −, −), (+, −, +)}

= 𝑃{(. , +, −)} + 𝑃{(+, −, . )}

=
1

2
sin2(𝜃3 − 𝜃2) +

1

2
sin2(𝜃2 − 𝜃1).

 

Combining both of these results, (2) reduces to 

1

2
sin2(𝜃3 − 𝜃1) ≤

1

2
sin2(𝜃3 − 𝜃2) +

1

2
sin2(𝜃2 − 𝜃1), 

which is Eugene Wigner’s interpretation of Bell’s inequality. Taking 𝜃3 − 𝜃2 = 𝜃2 − 𝜃1 =
𝜋

6
 and 

𝜃3 − 𝜃1 =
𝜋

3
 gives 

1

2
≥

3

4
, which is a contradiction. Therefore, three particles cannot all be in the 

same spin state with probability 1. 

Remark 2. The proof of the above theorem was worked out for (+, +, +) or (−, −, −) type spin 

correlation. To generalize the proof, suppose that the ISC particles are measured to be (+, −, +) 

along an arbitrary measurement direction. Then, the spin outcomes in the three different directions 

𝜃1,  𝜃2,  𝜃3 can be written as: 

{(+, −, −), (+, +, −)} ⊂ {(+, −, −), (+, +, −), (−, −, −), (+, +, +)}. 

                                                        

3  Note that the eight elements of 𝑆  constitute a basis for a three particle GHZ state [7], associated with perfect 
correlations. In this theorem, we are asking if in addition to being a GHZ state, it is also an ISC state which requires a 
stronger condition. As the theorem shows the answer is "no" and consequently, ISC states can only occur in pairs. Full 
details on the difference between GHZ and ISC states are given in the appendix to this article. 
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Essentially, this means that we flipped the |+⟩ to |−⟩ to represent the state of particle 2. Applying 

the same probability argument as before but noting that 𝑃{(+, −, −), (−, −, −)} =
1

2
𝑐𝑜𝑠2(𝜃3 −

𝜃2), the inequality becomes 

1

2
sin2(𝜃3 − 𝜃1) ≤

1

2
cos2(𝜃3 − 𝜃2) +

1

2
cos2(𝜃2 − 𝜃1). 

Then upon taking 𝜃3 − 𝜃2 = 𝜃2 − 𝜃1 =
𝜋

2
−

𝜋

6
 and 𝜃3 − 𝜃1 = 𝜋 −

𝜋

3
 gives as before 

1

2
≥

3

4
, which 

is a contradiction. 

Remark 3. Theorem 1 and the footnote clearly indicate the uniqueness of the four Bell states in 

that they are also the only ISC states. It adds further weight to using the Bell states as an algebraic 

basis to define the entanglement measure of pure and mixed states in terms of concurrence [6]. 

2. Electron Pairing 

Historically, the distinction between Fermi-Dirac and Bose-Einstein statistics has been considered 

on the basis of particle spin value: a half-spin particle was thought to obey Fermi-Dirac statistics. In 

contrast, an integer spin particle was thought to obey Bose-Einstein statistics. However, it has been 

shown in [1-5] that this is not entirely correct. Pauli’s original proof of the spin-statistics theorem 

did not apply to entangled particles. More specifically, ISC states, formed from entangled paired 

states, do not obey the microcausality principle, which is at the core of Pauli’s proof. Indeed, the 

hundreds of papers (if not thousands) on the subject of ‘non-locality’ attest to this. The more general 

form of the spin-statistics theorem can be stated as follows: 

Theorem 2. A necessary and sufficient condition for Fermi-Dirac statistics is that the state of a 

system of n-indistinguishable particles be 𝑆𝐿(𝑛, 𝒞) invariant. 

Remark 4. For those unfamiliar with Lie group theory, it should be pointed out that 𝑆𝐿(𝑛, 𝒞) is a 

Lie group. The set of rotations is a subgroup of this group. In light of this theorem, Fermi-Dirac 

statistics is best classified in terms of this group and, not in terms of the permutation group that has 

often been used. This Lie group and the permutation group have very different unrelated properties. 

The permutation group is used to define the term “indistinguishable”. Different wave functions can 

be "indistinguishable" under different types of permutations, but the Fermi-Dirac statistics is the only 

eigenstate common to all elements of 𝑆𝐿(𝑛, 𝒞). It is this uniqueness from the perspective of Lie 

groups that characterizes the Fermi-Dirac statistic. 

Various proofs have been offered in [3] and [4] and can be found in the appendix to this chapter. 

Since, spin value is not part of the theorem, it follows that the distinction between Fermi-Dirac and 

Bose-Einstein statistics is not based on spin value but rather on whether they contain 

indistinguishable ISC pairs or not. The ISC pairing may not be immediately obvious to someone 

focusing on the Fermi-Dirac state but in fact since the Fermi-Dirac statistic can be written as the 

wedge product of 𝑛  terms, it follows that any pair of them will be rotationally invariant and 

consequently the Fermi-Dirac statistic can be considered composed of 𝐶2
𝑛 combinations of ISC pairs. 

In other words, Fermi-Dirac statistics involve ISC paired states while Bose-Einstein statistics follow 

by breaking the paired states, meaning that their spin alignments are independent. If we consider 

the paired state as a singlet state then it is also possible to break the indistinguishability condition 
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in such a way that ISC states can under the right conditions, collapse into 𝑛 indistinguishable or 

distinguishable distinct pairs of ISC states each with a total spin of 0 or 1. To distinguish both of 

these states, we refer to |𝜓1⟩(𝑜𝑟|𝑒1⟩)  as a singlet or anti-parallel state and |𝜓2⟩(𝑜𝑟|𝑒2⟩)  as a 

parallel state. In molecular bonding theory, we identify anti-parallel with bonding states and parallel 

with anti-bonding states, respectively. If we consider each paired state a new entity, then 

independent but indistinguishable pairs will exhibit Bose-Einstein statistics. Historically speaking, 

the parallel state would be called a ‘vector boson’ because it has a total non-zero integral spin value. 

2.1 An Example with Two Component States 

Returning to equation (1), we note that the vectors. 

|𝜓1⟩ =
1

√2
(| + −⟩ − |−+⟩) and |𝜓2⟩ =

1

√2
(| + +⟩ + |−−⟩) 

are called respectively the singlet (anti-parallel) and parallel states. It should also be noted that for 

any two vectors in 𝒞2 of the form 

𝐚 = (
𝑎1

𝑎2
)  and 𝐛 = (

𝑏1

𝑏2
) 

such that 𝑎1𝑏2 − 𝑏1𝑎2 = 1, |𝜓1⟩ =
1

√2
| + −⟩ − | − +⟩ = 𝐚 ∧ 𝐛, which is defined by 

𝐚 ∧ 𝐛 ≡
1

√2
(𝐚 ⊗ 𝐛 − 𝐛 ⊗ 𝐚). 

It also follows from linearity and on combining equations (1), (2), and (3) that the state 

𝑐1|𝜓1⟩ + 𝑐2|𝜓2⟩ =
1

√2
(𝑐1|+ −⟩ − 𝑐1|− +⟩ + 𝑐2|+ +⟩ + 𝑐2|− −⟩) (8) 

is globally a rotationally invariant state. However, it is not ISC (see definition 1). 

We can combine both of these states (written in the form. |𝐞1⟩ and |𝐞2⟩) to define a Clifford 

algebra where the product of any two terms is rotational invariant. To see this: 

Definition 2. Let 𝐚 and 𝐛 be in ℛ2 

𝐚𝐛 ≡ 𝐚 ⊗ 𝐛 + 𝐚⊥ ⊗ 𝐛⊥. (9) 

The following lemma now follows: 

Lemma 1. Let 𝐚 and 𝐛 be as above then 

𝐚𝐛 = 𝐚. 𝐛|𝐞2⟩ + (𝐚 × 𝐛)|𝐞1⟩. (10) 

In other words, the product 𝐚𝐛 defines a Clifford algebra. 

Proof: Note that 
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𝐚 = 𝑎1 (
1
0

) +𝑎2 (
0
1

)  and 𝒃 = 𝑏1 (
1
0

) +𝑏2 (
0
1

). 

When these are substituted into the definition of the Clifford algebra and the various expressions 

are multiplied, the result immediately follows. 

Remark 5. If we define 〈𝐚, 𝐛〉 =
1

√2
(𝐚 ⊗ 𝐛 + 𝐛⊥ ⊗ 𝐚⊥) then 〈𝐚, 𝐛〉 = 𝐚. 𝐛|𝐞2⟩ which is a scalar 

product. 

In contrast, the state 

|𝜓⟩ =
1

2
(|+ −⟩ + |− +⟩ + |+ +⟩ + |− −⟩) = [

1

√2
(|+⟩ + |−⟩)]

2

(11) 

can be interpreted as a product of two independent states from a probability perspective and can 

be modeled by a binomial distribution, analogous to flipping a fair coin twice. They are not 

independent in the sense of linear algebra. Also |𝜓⟩ is not rotationally invariant, although it is 

indistinguishable in that it is invariant under permutations. 

2.2 Spin-1 and Two-component States 

In conventional spectroscopy, a spin-1 particle can be separated into three states, which are 

denoted by |1⟩, |0⟩, |−1⟩. Traditional quantum mechanics believes that each of these states should 

occur with an equal probability of 
1

3
. This means that a spin-1 particle can be written as a 

superimposed state: 

|𝜓𝑑⟩ =
1

√3
|1⟩ +

1

√3
|0⟩ +

1

√3
|−1⟩. (12) 

In contrast, it should be noted that the indistinguishable state given by equation (11) can also 

be re-written as the superposition of the three unit vectors. |+ +⟩, 
1

√2
(|+ −⟩ + |− +⟩) and |− −⟩ . 

It takes on the form: 

|𝜓⟩ =
1

2
|+ +⟩ +

1

√2
(

1

√2
(|+ −⟩ + |− +⟩)) +

1

2
|− −⟩. (13) 

Written in this form, |𝜓⟩ is often referred to as a triplet state with each component occuring with 

probabilities 
1

4
, 

1

2
, and 

1

4
 respectively. This also reflects a binomial distribution model. On comparing 

equations (12) and (13), we see that they are not compatible with each other. They have different 

probability distributions. 

Which one is correct? Mathematically speaking, they represent two different and distinct 

models. In terms of physics, the correct model can only be decided by experiment. Indeed, the 

prediction that the triplet state will have a probability distribution of 
1

4
, 

1

2
, and 

1

4
 is strongly supported 

by the theory of Clebsch-Gordan coefficients as noted in [1]. In other words, if a beam of composite 

particles, each made of two spin 
1

2
 states that are not ISC, is passed through a Stern-Gerlach device, 
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then it should decompose into three beams with intensity 
1

4
, 

1

2
, and 

1

4
 and not 

1

3
,

1

3
,

1

3
. This would be 

very difficult to accomplish in the case of a charged particle like a deuteron. Nevertheless, if it were 

experimentally verified, it would not only vindicate the approach taken here, but would also show 

that ISC states can help us to understand elementary particle physics better. 

2.3 An Example with Three or More Component States 

We have noted that the validity of the Pauli-exclusion principle presupposes complete 

indistinguishability in that a Fermi-Dirac state is anti-symmetric under permutations and completely 

invariant under the group 𝑆𝐿(𝑛, 𝒞). Apart from the fact that the distinction between fermions and 

bosons is no longer based upon half-integral and integral values but upon the presence or absence 

of ISC coupling, it should also be pointed out that the indistinguishability conditions among particle 

states may be relaxed in that such conditions depend upon the initial assumptions and/or the 

experimental arrangement. For example, we expect that the four electrons in the beryllium atom 

obey 𝑆𝐿(4, 𝒞) Fermi-Dirac statistics while the four electrons within two separate helium atoms will 

obey the statistics associated with 𝑆𝐿(2, 𝒞) ⊗ 𝑆𝐿(2, 𝒞). In other words, while the electrons within 

each helium atom are indistinguishable and form a pair, the different pairs respectively associated 

with the individual helium atoms are distinguishable from each other because the atoms are 

distinguishable and can also be in the same paired state. To put this in a banal way note that if two 

canisters of helium gas are released in separate rooms, then the atoms in distinct rooms are partially 

distinguishable by their separation. It follows that for beryllium, the statistics of the electron 

configuration contain twenty-four terms and are given by 

|𝜓⟩𝑏 = |𝜓⟩1 ∧ |𝜓⟩2 ∧ |𝜓⟩3 ∧ |𝜓⟩4 , (14) 

while in the case of the four electrons in the two helium atoms, the state contains four terms given 

by 

|𝜓⟩2ℎ = |𝜓⟩1 ∧ |𝜓⟩2 ⊗ |𝜓⟩3 ∧ |𝜓⟩4 . (15) 

Both states contain ISC-paired particles but in different quantities. 

Equation (14) defines a Fermi-Dirac state for four indistinguishable particles in accordance with 

the Pauli exclusion principle. Indeed, it has been previously noted that a necessary and sufficient 

condition for the existence of a Fermi-Dirac state is invariance under 𝑆𝐿(𝑛, 𝒞). What happens in the 

case of parallel spin states? Reviewing equation (10), which defines a Clifford algebra, we note that 

it is composed of an inner and an outer product. Geometrically speaking the outer product of 𝑛 

vectors raise the grade of the multivector and corresponds to volume. It remains invariant under 

the action of the 𝑆𝐿(𝑛, 𝒞) constitutive of a Fermi-Dirac statistic while inner products lower the 

dimension of the multivectors and, indeed, in the case of two vectors define a scalar, which makes 

it impossible to generalize it to three terms. In regular vector calculus expressions like 〈𝐚, 𝐛〉, (𝐚 ∧

𝐛). 𝐜 , and 𝐚 ∧ 𝐛 ∧ 𝐜  exist and are well-defined but the inner products of three vectors are not 

defined. Moreover, if one were to proceed inductively and replace, for example, the antisymmetric 

terms in 𝐚 ∧ 𝐛 ∧ 𝐜 with symmetric terms corresponding to parallel states, the new expression would 

no longer be rotationally invariant, as is the case with the standard inner product. Consequently, if 

they exist in nature, the behavior of parallel states will have very different characteristics to singlet 
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states. It is also worth noting that it is quite possible, if the conditions are correct, to have 2𝑛 

particles forming 𝑛 ISC paired states all in the same energy state. Moreover, as the temperature 

tends to 0, we can expect that these will be in the lowest energy state and can form a BEC if the 

crystal structure is correct and the underlying Casimir forces [8] do not break the bonding. Indeed, 

in order for the bonds to be broken, an energy greater than ℎ𝜈 will be needed. One of the objectives 

of this article is to point out that 

● There are at least three categories of Bose-Einstein condensates, distinguished by the words 

uncorrelated states, parallel ISC states, and antiparallel ISC states. Further categories can be 

created by mixing these three possibilities in different proportions. 

● The theory of super conductors presupposes the three categories listed above. It also follows 

that there are two types of Cooper pairs composed of anti-parallel and parallel states. 

● In the molecular bonding theory, the orbitals associated with bonding and anti-bonding states 

can be identified with singlet and parallel states. 

3. A Higher Order Viewpoint 

The approach taken in this article is that the ISC states represented by |𝜓1⟩ and |𝜓2⟩ serve as a 

point of departure and can be considered a unifying factor in understanding superconductors, BEC 

theory, and molecular bonding in chemistry. We are neither attempting to replace various theories 

such as BCS nor the thermodynamics associated with calculating. 𝑇𝐶  for different types of 

superconductors nor are we attempting to analyze the percentage of molecules found in the BEC 

state inside superconductors. The objective here is to show that the different types of group 

structures that can be associated with ISC pairs can also serve as a unifying factor in understanding 

the great variety of BEC and superconducting states. The pairing alone does not explain everything 

and operates in accordance with the other laws of physics. Indeed, it is already apparent from the 

literature that the effects of temperature and pressure, electromagnetic forces, crystalline 

structure, geometry, and background noise associated with Casimir and van der Waal forces all play 

their own role in explaining and modulating the above phenomena. For example, recent 

experiments described in [9] and [10] show how Cooper pairs can be fine-tuned by means of Yu-

Shiba-Rusinov (YSR) states. In effect, the YSR states result from modifying and interfering with the 

regular superconductor surroundings by using magnetic impurities. Nevertheless, suppose we also 

include the uniqueness of the ISC states (there are only two of them) then in that case, their addition 

contributes to a further refinement of our understanding, analogous to how the periodic table 

helped unify and explain many chemical properties that had been previously discovered and at the 

same time anticipated further developments. 

In the context of the ISC pairs, the first thing to note is that the pairing phenomenon applies to 

charged particles and quantum states associated with uncharged particles such as photons and 

neutrons. Indeed, the whole experimental framework that was used to test Bell’s inequality used 

singlet-state photons [11]. Neutrons in the singlet state have also been detected in large nuclei 

where 𝑍 ≠ 𝑁 [12]. In other words, ISC states are a phenomenon in themselves. They obey the laws 

of physics but are also constitutive of a new emergent physical law that is not necessarily dependent 

upon force fields but rather on probability laws associated with isotropy and a higher-order 

symmetry related to group representation theory. 



Recent Progress in Materials 2024; 6(2), doi:10.21926/rpm.2402012 
 

Page 11/25 

It follows that to consider spin strictly as an electromagnetic phenomenon is misleading. Charged 

particles with spin can acquire angular momentum through electromagnetic interactions, but the 

rotational invariance is not a consequence of electromagnetism. For example, singlet state photons 

are not susceptible to electromagnetic interactions but are isotropically polarized. Similarly, the 

isotropic characteristics of charged singlet states means that there is no preferred direction when 

measuring a charged particle's angular momentum. Often, the interaction with the measuring 

instrument imparts spin angular momentum. 

The second thing to note is that an ISC state is primarily a geometric and group theoretical 

property associated with parallel or anti-parallel alignment, which emerges spontaneously in nature 

under the right conditions. The right conditions are multiple and depend upon the presence and/or 

absence of the correct temperature and pressure, electromagnetic and nuclear forces, background 

noise and radiation and in the case of chemistry, the rules of valency governing atomic and 

molecular bonding. One expalnation for the formation of ISC pairs in low-temperature 

superconductors, for example, is that forces that might otherwise disrupt and tear apart the ISC 

alignment are diminished so that paired states can form naturally. Something similar occurs in high-

energy superconductors where in the case of (almost) perfect crystals, the background environment 

is uniform throughout and constructed so that the background interference that might prevent the 

formation of the pairs is mitigated. Other things being equal, the right background provides for the 

spontaneous development of the pairs. 

We might ask what causes the spontaneous alignment. It cannot be a force field otherwise, we 

would have to have an exchange particle mediating the interaction beyond the light cone. Certainly, 

phonons can mediate the forming of pairs when particles are close to each other, but once the pairs 

are formed and remain intact, the phonons have at best, no role to play and at worst may be a 

factor in breaking the entanglement. Two non-interacting particles can be aligned because they are 

rotationally invariant and non-local and violate microcausality. Again we might ask why rotational 

invariance occurs? The initial alignment may have been mediated by close-range interactions 

between the particles, such as phonons or the Casimir effect. Nevertheless, even if the particles 

come close enough to interact, that does not explain the rotational invariance. External (and also 

internal) forces bring the two particles together like interlocking pieces of a jigsaw puzzle, allowing 

the ISC state to be formed, but that does not explain why such states exist in the first place. ISC 

states remain a mystery associated with Godel’s theorem in that no mathematical system explains 

its own completeness. Higher-order viewpoints require additional axioms and/or hypotheses 

and/or the suspension of old axioms. ISC states occur because, mathematically, they are permitted 

within the Hilbert space theory of quantum mechanics. It is part of the mystery of existence akin to 

asking why spacetime is best modeled by a four-dimensional pseudo-Riemannian manifold. It also 

reflects Leibnitz’s question, "Why is there something rather than nothing?” 

3.1 Condensate States 

The spin-statistics theorem presented here does not depend on the spin's value. Fermi-Dirac 

statistics is a consequence of indistinguishable spin pairing, not value. As the indistinguishability is 

relaxed various forms of para-statistics emerge. For example, we have already noted that in the case 

of four electrons within beryllium (Be), we can expect 𝑆𝐿(4, 𝒞) statistics, while if the four electrons 

are associated with two independent helium (He) atoms, then the four electrons will obey 
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𝑆𝐿(2, 𝒞) ⊗ 𝑆𝐿(2, 𝒞) statistics, while the three electrons of Lithium and the isolated electron of 

hydrogen obey 𝑆𝐿(3, 𝒞) ⊗ 𝑆𝑂(2, ℛ). Since spin value has no role to play, we might postulate that 

Bose-Einstein condensation is possible for electrons. If we consider a superconductor as a moving 

condensate (see below), we might consider a condensate as a superconductor from the perspective 

of the rest frame. 

In terms of parallel pairing, the existence of distinguishable pairwise 𝑆𝑂(2, ℛ) symmetry states 

mean that the isotropy is defined with respect to two 2-dimensional planes and presuppose a 

weaker energy bond. Hence, parallel pairwise bonds are easier to break and, consequently, will be 

more likely to undergo interactions with its environment, including chemical ones. There are 

different ways that parallel pairing can take place depending on the inclination of the respective 

planes. In practice, the actual pairing will depend upon the physical conditions under which they are 

created. For example, if two charged particles are parallel entangled, it would be reasonable to 

expect the ISC states lie in planes perpendicular to the direction of electrostatic attraction or 

repulsion. In particular, if they form a condensate, they will exhibit parallel planar alignment in every 

direction at once by virtue of the isotropy associated with the entanglement. Moreover, suppose 

Casimir forces are introduced along the line joining the center of mass of the two objects. In that 

case, the interplay between Casimir forces will always add an attractive component that enhances 

or diminishes electromagnetic forces. 

3.2 Three Possible Condensate States 

The essence of BEC is that particles, atoms and/or molecules are all in the same lowest energy 

state. The BEC may appear as a macroscopic object, although it comprises a conglomerate of 

microscopic entities. Moreover, the closer these entities resemble macro objects, the more they 

will appear to be (almost) at complete rest with respect to the laboratory. However, appearances 

can be misleading, and with this in mind, we distinguish five possibilities: 

1. An aggregate of independent atom molecules is brought to rest (almost). No pairing is 

involved. The first ever BEC state was formed from loosely bound rubidium (𝑅𝑏87) atoms. 

Although they are at rest, they are still referred to as a gas because of their low density. 𝑅𝑏87 

atoms are repulsive, and consequently the distance separating them stems from an 

equilibrium between the repulsive forces and the Casimir or Van der Waals attractive forces, 

first discovered by London (1930), which are usually attributed to zero-point energy (p.99) 

[13]. Moreover, 𝑅𝑏87 is technically not a boson in the “older” sense of the term in that the 

condensate is a collection of distinguishable atoms. In contrast, a proper Bose-Einstein 

statistic would have required that they be indistinguishable. Consequently, such a state 

should be impossible. Distinct atoms are distinguishable by definition. Indeed, Einstein 

predicted that BEC could not be created for that reason. With the new formulation of the spin-

statistics theorem, there is nothing to prevent paired or unpaired states from being brought 

to rest, at least in principle. Whether or not it happens depends on technology and the relative 

strength of the vacuum forces. When Cornell and Wieman created the first BEC, they cooled 

the atoms by slowing them down using laser beams and further reducing the temperature by 

removing the remaining moving atoms with powerful magnets. What remained were about 

2000 atoms in a non-dynamic equilibrium that lasted for 15-20 seconds in a diameter of 20 

microns (10−6 m), which corresponds to a particle separation distance of ∼ 10−8𝑚 . In a 
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similar experiment posted in [14], the number of 𝑅𝑏87  atoms forming the BEC state are 

between 105 − 106, lying within a radius 0.1𝑚𝑚 − 0.25𝑚𝑚. It should also be pointed out 

that Einstein did not predict the existence of BEC states but the opposite in that he “concluded 

that the theory provided a paradox because it predicted a state with indistinguishable 

particles occupying this same volume and as Einstein said ‘but this appears to be as good as 

impossible.’ "[15] Finally, if someone were observing this condensate from the sun, they could 

claim that they are observing a superconductor of distinct atoms moving in a gravitational 

field.4 Mathematically speaking, the total energy of the system in the rest frame is given by 

𝐸 = 𝑇 + 𝑉 = 𝑉 =
1

2
𝑛ℏ𝜔, (16) 

where 𝑛 corresponds to the number of atoms in the condensate and 𝑉(𝑟) is the potential 

energy due to the Casimir force of the vacuum and the lattice structure. 

2. The second type of condensate occurs when elementary particles or atoms form pairs during 

the cooling process, although these pairs may already exist as for example, in the case of 

molecular bonds at room temperatures or “Pre-formed Cooper pairs in copper oxides and 

𝐿𝑎𝐴𝐼𝑂3 − 𝑆𝑟𝑇𝑖𝑂3  heterostructures.” [16] In other cases, the pairing will occur below a 

specific critical temperature 𝑇𝑐. This is called BCS-BEC crossover. One may think of the process 

of cooling room temperature. 𝑂2 to a BEC state. This, too, involves pairings associated with 

molecular bonding. Indeed, while writing this article, in the case of 𝑅𝑏87 we predicted that if 

the density between the atoms is increased, that should form 𝑅𝑏2
87 molecules, only to be 

pleasantly surprised during a literature search that such molecules have already been 

discovered [17]. However, it is essential to note that the diatomic molecules are not forming 

ISC states. It is the electron bonds holding the atoms together that form parallel or antiparallel 

ISC states. 

3. This last example begs the question as to whether we can have BEC states of elementary 

particles. This brings us back to Einstein’s original observation that “the theory provided a 

paradox because it predicted a state with indistinguishable particles occupying this same 

volume and as Einstein said ‘but this appears to be as good as impossible.’ "[15] Nevertheless, 

given that BEC condensates of hydrogen atoms have been created, it is not difficult 

theoretically to imagine the existence of a BEC state of hydrogen ions, where the electrostatic 

repulsion of the protons is counterbalanced by the van der Waals’ and Casimir attractive 

forces. Of course, experimentally speaking, this would be a lot more difficult to achieve given 

the repulsion between the protons and that the critical temperature. 𝑇𝑐  is inversely 

proportional to mass [18] (see equations 2.4.4 and 2.4.11), but the interaction should also 

allow for indistinguishable spin states to form a Femi-Dirac Condensate (FDC) with a frequent 

making and breaking of bonds with the nearest neighbors forming a dynamic equilibrium in 

the Fermi sea. This would be best performed in some type of trap. Indeed, on reading 

Bardeen’s description of Cooper Pairs, one has the impression that their behaviour is more 

akin to Fermi-Dirac statistics. Bardeen notes that “the idea of paired electrons, though not 

fully accurate, captures the sense of it” [19]. More precisely, about Bardeen’s quote, Delin 

                                                        

4 In practise, the BEC as prepared in the laboratory actually is free falling in a gravitational field. 
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and Orlando note that “we should not think of Cooper pairs as tightly bound electron 

molecules. Instead, there are many other electrons between those of specific Cooper pairs, 

allowing the paired electrons to change partners on a time scale of ℎ/2𝛥, where ℎ is Planck’s 

constant” [20] and 2Δ represents the binding energy of the pairs. This making and breaking 

of the Cooper pair bonds is more akin to the Fermi-Dirac statistic based on the more general 

form of the spin-statistics theorem (see Appendix). Bardeen would have been unaware of this 

new form of the theorem and consequently, associated the pairing phenomenon with Bose-

Einstein statistics. Nevertheless, his own quotation about the nature of the pairing would 

better fit Fermi-Dirac statistics as described above. One would hope that this could also be 

extended to electron clouds. Moreover, given the small mass, we would expect the Casimir or 

Van der Waals attractive forces to facilitate the making and breaking of the electron pairs. It 

will be a true FDC. 

4. We have postulated the existence of trapping hydrogen ions to form a BEC state. It should 

also be noted that the evidence suggests that the BEC between multiple electrons is created 

within superconductors. Quantum mechanically, this can be described by a series of quantum 

standing waves (see below). No magnetic field will be present because there is no relative 

motion between them. Moreover, if they were to move as a block, as seems to be the case 

with superconductors, then there would be no inner magnetic field, but the block would 

induce a magnetic field outside on and around the surface. 

5. Finally, we note there is no reason in principle that BEC state cannot involve parallel pairing. 

Indeed, the concept of anti-molecular bonding in chemistry may be seen as a potential BEC 

state. Essentially, the state can be created by forming the parallel ISC states and then cooling 

to a BEC state. An example of this might be found when considering. 𝑈7𝑇𝑒12 where parallel 

states seem to form very close to absolute zero [21]. Since these states exhibit 𝑆𝑂(2, 𝑅), 

Invariance will be easier to create if the BEC pairings are all in the same plane or, better still, 

perpendicular to a fixed plane. 

3.3 Superconductors  

We define a superconductor as a moving BEC. For example, we referred to the 𝑅𝑏87 BEC as a 

superconductor moving under gravity as seen from the perspective of the sun. It moves as a block, 

with no relative motion between the particles and without electromagnetic resistance. From the 

standpoint of general relativity, we could say that it is moving on a geodesic and consequently free-

falling in a quantum (and not classical) vacuum, mediated by the presence of Casimir forces, which 

either enhance or impede the motion. It is difficult to know how these forces work and what their 

causes are. Perhaps gravity itself is a manifestation of these forces. 

This being the case, if a BEC state is defined in Minkowski space, then its collective motion will 

be Lorentz invariant. In addition, an internal higher-order symmetry is associated with the ISC pairs. 

Specifically in the case of a BEC composed of singlet states, they form a Lorentz invariant higher-

order symmetry [2], while in the case of parallel pairing, there is an 𝑆𝑂(2, 𝑅) invariant symmetry. 

This latter symmetry is more limited because the ISC correlated planes are perpendicular to the 

direction of motion or to express it in algebraic language, 𝑆𝑂(2, 𝑅) is a subgroup of the Lorent 

group. Given these characteristics of superconductors and the fact that bounded ISC particles move 
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freely without resistance inside a conductor, we might ask what characteristics of the vacuum field 

within a superconductor explain such a motion. 

3.4 The Field Inside a Superconductor 

The two pertinent characteristics to help understand the field inside the ideal superconductor is 

that particles are considered BEC condensates formed of paired ISC states that move collectively 

against a backdrop of a perfect crystal, corresponding to periodic motion. This suggests that there 

is also an isotropic EM-field within the superconductor, which is analogous to the field in free space. 

The motion is best modeled by an (infinite) series of 3-dimensional harmonic oscillators [22]. This 

being so, following Milonni [13] we note that the field Hamiltonian is of the form 

𝐻𝑓 = ∑ ℏ𝜔𝑘 (𝑎𝑘𝜆

† 𝑎𝑘𝜆
+

1

2
)

𝑘𝜆

(17) 

such that 

[𝑎𝑘𝜆
(𝑡), 𝑎𝑘𝜆(𝑡)

† ] = 𝛿𝑘,𝑘′
3 𝛿𝜆𝜆′ , 

and 𝜆 refers to the bi-polarity of the spin field. Moreover, the vector potential in free space is given 

by 

𝐴(𝐫, 𝑡) = ∑ (
2𝜋ℏ𝑐2

𝜔𝑘𝑉
)

1
2

𝑘𝜆

[𝑎𝑘𝜆
(𝑡)exp(𝑖𝐤. 𝐫) + 𝑎𝑘𝜆

† (𝑡)exp(−𝑖𝐤. 𝐫)]𝐞𝑘𝜆
(18) 

from which it follows that 

𝐄(𝐫, 𝑡) = ∑ (
2𝜋ℏ𝜔𝑘

𝑉
)

1
2

𝑘𝜆

[𝑎𝑘𝜆
(𝑡)exp(𝑖𝐤. 𝐫) − 𝑎𝑘𝜆

† (𝑡)exp(−𝑖𝐤. 𝐫)]𝐞𝑘𝜆
(19) 

and 

𝐁(𝐫, 𝑡) = 𝑖 ∑ (
2𝜋ℏ𝑐2

𝜔𝑘𝑉
)

1
2

𝑘𝜆

[𝑎𝑘𝜆
(𝑡)exp(𝑖𝐤. 𝐫) − 𝑎𝑘𝜆

† (𝑡)exp(−𝑖𝐤. 𝐫)]𝐤 × 𝐞𝑘𝜆
. (20) 

Note that, 𝑐2 = (𝜖𝜇)−1 corresponds to the velocity of light inside a conductor with permittivity 

𝜖 and permeability 𝜇, which is different to the velocity of light in vacuum. Using the definition 𝑃 =
1

4𝜋𝑐
∫

𝑉
𝑑3𝑟(𝐸 × 𝐵), we obtain 

𝑃 = ∑ℏk (𝑎𝑘𝜆
† 𝑎𝑘𝜆 +

1

2
) . (21) 
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It now follows that [𝑃, 𝐻𝑓] = 0 where 𝐻𝑓 is the field Hamiltonian, which means that the linear 

momentum is a constant in the direction of motion. In what follows below, we assume that the 

direction of motion is the x-axis. 

With this in mind, we can now apply the above to anti-parallel and parallel ISC states. Note that 

the bipolarity term represented by 𝜆 will be absorbed into the ISC state. If these states are oscillating 

in unison and also in movement because of an (electric) potential difference, this will lead to 

extending the 2-dimensional Hilbert space ℋ to the space ℋ ⊗ 𝐿2(𝑟, 𝑡). This enlarged state will 

experience a twofold Lorentz invariance. The first is between the pairs and the second with respect 

to the the individual motion of each electron in the superconductor relative to the direction of the 

potential and subjected to Maxwell’s equation. As previously explained, the ISC states may not 

actually be spinning, and if they are, they must be in such a way that the entanglement is preserved, 

and in the case of the singlet state, the sum of their angular momentum is 0. Moreover, suppose 

there is equal spacing between the pairs as if they are a (virtual) lattice. In that case, the pairs within 

the potential will not experience any relative motion with respect to each other, in which case there 

will be no induced magnetic properties. On the other hand, if this moving lattice is itself in relative 

uniform motion with respect to the lattice points of the conductor, again, there will be no induced 

electromagnetic currents since 𝑑𝑖𝑣𝐵 = 𝑐𝑢𝑟𝑙𝐵 = 0. Indeed, in the rest frame of the electron lattice 

𝐵 = 0. 

Equivalently, if we let 𝜉 (a constant) be the separation distance between the center of mass of 

adjacent ISC pairs of electrons and 𝑣 the constant velocity (along the 𝑥 axis) with respect to the 

fixed points of the lattice, then as quantum particles the wave function with respect to the n-nodes 

of the lattice can be expressed as 𝜓 = ∑𝑛𝜓𝑛 such that: 

𝜓𝑛(𝑥, 𝑡) =
1

𝑠𝑜√2
[exp(𝑖𝑘(𝑥 − 𝑣𝑡))exp(−2𝑖ℏ−1𝑚∗𝑐𝑠)(| + −⟩ − | − +⟩)], where 𝑥 − 𝑣𝑡 = 𝑛𝜉, 𝑘 =

2𝜋𝑗

𝜉
, 𝑗, 𝑛 𝑎𝑟𝑒 integers (22) 

for the singlet state, while for the ISC parallel state, 

𝜓𝑛(𝑥, 𝑡) =
1

𝑠𝑜√2
[exp(𝑖𝑘(𝑥 − 𝑣𝑡))exp(−2𝑖ℏ−1𝑚∗𝑐𝑠)(| + +⟩ + | − −⟩)], where 𝑥 − 𝑣𝑡 = 𝑛𝜉, 𝑘 =

2𝜋𝑗

𝜉
, 𝑗, 𝑛 𝑎𝑟𝑒 integers. (23) 

The above wave functions have been derived directly from the kinematics of superconducting 

motion, assuming that Cooper pairs are ISC correlated, that the separation between the two 

electrons of the ISC (Cooper) pair is constant (dependent upon 𝑘) and that separation between 

different ISC pairs (𝜉) is also constant. Moreover, as quantum particles we expect for the singlet 

(anti-parallel) and parallel states, respectively that in addition to the uniform motion, there will be 

a zitterbewegung vibration such that 𝑚 ∗≈ 2𝑚, with 𝑚 the electron mass and 𝑚 ∗ the mass of the 

ISC pair. We note that the zitterbewegung term exp(−2𝑖ℏ−1𝑚∗𝑐𝑠) can be interpreted as a periodic 

isotropic vibration corresponding to a pair of synchronised particles such that 𝑠 ∈ [−𝑠𝑜 , 𝑠𝑜] with 𝑠𝑜 

being the maximum wavelength of the vibration of each particle. 

3.5 The Effects of Magnetic Fields on Superconductors 

It follows that the magnetic dipole characteristics of each entangled state, whether in the parallel 

or anti-parallel state, depend not on the entanglement per se but upon the characteristics of the 

external magnetic field in which it is immersed. As long as the set of entangled states is in a 
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superconducting state, there is no relative motion between them, and consequently, there is no 

interior magnetic field (meaning a constant magnetic potential). This will be manifested as the 

expulsion of a magnetic field (The Meissner Effect). In other words, if the magnetic field is not strong 

enough to break ISC bonds and/or the lattice structure, it will be eliminated from the 

superconductor. Magnetic properties are manifested in charged particles that are accelerating. For 

quantum phenomenon, this means that there is a minimum energy 𝐸 = ℏ𝜔𝑚𝑖𝑛  required to 

accelerate or remove a particle from a lattice. Below this threshold, magnetic fields will not appear 

in that they can be considered as having a constant magnetic potential 𝐀 such that 𝑐𝑢𝑟𝑙𝐀 = 0. 

Indeed, often, the presence of the magnetic field will destroy the entanglement by breaking the 

symmetry between the entangled particles and replacing it with a polarization effect due to the 

induced magnetism, although in some cases, it might actually enhance the entanglement (as in the 

case of some molecular bonding in chemistry). In fact, it appears both situations are possible 

theoretically (and experimentally) speaking. For example, an external magnetic field will induce 

magnetic dipoles properties into each pair of particles, causing them to further align or become 

independent. If the magnetic dipoles associated with each particle are aligned on a line, one behind 

the other like compass needles, then their N-S poles will attract each other but in two different 

ways. If the magnetic field is strong enough, it can break the ISC coupling and create a string of N-S 

dipoles that align, having the overall characteristics of one large ferromagnet.. However, this 

characteristic will usually disappear when the external magnet is switched off. On the other hand, 

if the field does not break the ISC coupling but causes them to rotate in unison, then pairs will 

behave like diamagnets (especially in parallel cases) and exhibit properties associated with rotating 

superconductors. 

Their behavior will be affected by the strength of the magnetic field in which they are placed and 

their orientation. If a superconductor current is moving along the positive 𝑥-axis and the magnetic 

field is placed at an angle 𝜃 then the magnetic characteristics will depend upon both the strength 

and the alignment angle employed [21, 23]. If we have a strict polarization effect and 𝑛 dipoles are 

lined up on a line then there will be a single N-S dipole effect due to cancelations. If the magnetic 

field rotates, cancellation effects may no longer exist, and the electrostatic repulsion between ISC 

parallel states may increase and even flip polarity. Moreover, if the magnetic field is strong enough, 

it will pull them apart. For example, if all the magnetic dipoles are in equilibrium and parallel to each 

other (as well as parallel to the field) then as the field strength increases the magnetic repulsion 

between the particles will increase until they are eventually independent of one another. On the 

other hand, in the case of a singlet state, if the induced magnetic dipoles are placed side by side 

analogous to magnetic dipole moments created by two parallel wires carrying a current in the same 

direction, then they will not only attract each other but will also cancel each other out. In reality, as 

experiments with superconductors have shown, the possibilities are almost endless. Temperature, 

Casimir forces, electromagnetic properties, and the geometry of the potential superconductor all 

play a role, and to tame these possibilities means operating with simple models. Also, the critical 

role of temperature 𝑇𝑐 in aiding or impeding superconductivity has been noted but it alone cannot 

explain everything in that 𝑇𝑐 depends upon the chemical composition of the material, its geometry 

(think of the different allotropes of carbon) and whether the pairing is parallel or anti-parallel. 

Finally, we note that in principle, one does not need pairing to have superconductivity. However, 

given the natural tendency of particles to pair (which is the thesis of this manuscript), in order to 

create non-pairing super conductors, one will need to have large spatial separation between 
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particles to prevent the pairs from forming. For example, as already mentioned, when 𝑅𝑏87 was 

originally used to form a BEC condensate the spatial separation of the atoms was on the 

macroscopic level but when they were brought closer together then transitioned into 𝑅𝑏2
87 

molecules, which means that the unbounded electrons came together to form ISC orbitals. Also, as 

previously noted, the BEC is composed of 𝑅𝑏87  relative to the sun, could be considered as 

superconducting under gravity. The challenge would be to do the same thing with electromagnetic 

forces. 

3.6 Molecular Bonding 

The basic thesis is that there is a natural tendency for elementary particles like electrons to form 

ISC pairs and indeed these bonds can be long-ranged once they are formed. Geometrically speaking, 

the pairing is analogous to interlocking pieces of a jigsaw in that the particles have to be close 

enough together to be matched. In other words, we claim that although the pairs can remain 

entangled over a long range, they are formed at close range through electromagnetic and/or strong 

interactions, and Casimir forces. Once formed, the way in which these pairs are distributed in 

spacetime depends on how long it takes for decoherence, which in turn depends upon temperature, 

electromagnetic and other forces. It is precisely these variable factors operating randomly at times 

that give rise to quantum statistics. 

 Chemical elements are a natural domain for forming ISC entangled pairs. The simplest way to 

form such pairs is within atomic and/or molecular orbitals (meaning having the same energy and 

orbital angular momentum) but it is not strictly necessary. As modern chemistry has demonstrated, 

one can also have paired particles involving different orbitals, such as ortho- and para-oxygen [24]. 

Another example can be found by considering a positronium state which is formed by a positron 

and an electron. In this positronium state, the two leptons share the same atomic-like orbital, and 

their spins may be correlated as parallel or anti-parallel, corresponding to para-positronium and 

ortho-positronium variants. Moreover, this positronium example demonstrates that spin 

correlation between two leptons is generally not restricted to only the anti-parallel case, even when 

they share the same orbital. By analogy, we consider delocalized electron pairing with parallel 

correlated spins. This analogy is appropriate for delocalized electrons because their wave function 

is not centered around any nucleus.In this case, two delocalized electrons form a pair via direct 

lepton-lepton interaction mediated by Casimir forces, similar to positronium. 

In either case, we might ask what causes the atomic and molecular orbitals. The Dirac equation 

predicts the existence of spin states, but it does not predict ISC pairs. That said, we maintain that 

the quantum vacuum that permeates all of spacetime and exists between the nucleus and the 

electrons in the atom is mediated by the Casimir forces, which enable the orbitals to form. 

Moreover, there seems to be a preference for singlet state pairing in that if momentum is induced 

into the pairs the singlet state will have spin angular momentum 0, in contrast to weak molecular 

bonds where parallel pairing takes place but has a spin angular momentum of ±1. In molecular 

chemistry, we associate these two different ISC states with anti-parallel and parallel bonding. 

In general, atoms are a natural domain for the formation of ISC pairs, and oftentimes, the 

indistinguishability conditions within the atom and molecule manifest themselves as Fermi-Dirac 

statistics. Nevertheless, as the above theory has aptly demonstrated, Fermi-Dirac statistics is not an 

absolute but rather highlights the pairing process when complete indistinguishability is involved and 
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also highlights the fact that indistinguishability conditions can be relaxed. For example, the 

molecular bonds associated with a molecule of ammonia (𝑁𝐻3) are formed by three hybrid orbitals 

in which all the electrons are in the same state. 

4. Conclusion 

As stated in the beginning, the objective of this article is to show that ISC pairing is a unifying 

principle when it comes to our understanding of BEC states, superconductivity and molecular 

bonding theory. Moreover, an ISC pair should be considered a single entity. It reflects an Aristotelian 

principle that the whole is more than the sum of its parts. Also, the Pauli exclusion can be derived 

by assuming that the particles forming ISC states are indistinguishable. Likewise, the conditions of 

indistinguishability can be relaxed, and many types of para-statistics can emerge. Also, the Bose-

Einstein statistics presuppose complete indistinguishability with the quantum state but without ISC 

pairing. 

The other key factor in understanding the pairing phenomenon is that it functions as an 

independent hypothesis within the system. It is caused by the geometric structure associated with 

spin. It is not derivable because once the Hilbert space structure on which quantum mechanics is 

constructed is permissible, the ISC state becomes possible. It is not caused by any external forces. 

It is an independent state constitutive of the geometric properties of spacetime. However, it is 

subjected to the laws of physics and will respond to other physical phenomena such as temperature, 

electromagnetic, and nuclear forces. The initial creation of these states appears to be mediated by 

Casimir forces that allow the original independent states to interact and combine non-linearly to 

form rotationally invariant states. Nature forms them because there is no reason why they should 

not exist, given the structure of spacetime. They are an emergent phenomenon. 

In terms of experimentation, the fact that only two ISC states are theoretically possible and that 

Cooper pairs and other parallel pairing phenomena are associated with superconductors cannot be 

a coincidence. It would seem that superconductor experiments have provided ample evidence of 

the existence of ISC pairs but have not fully explained them. Here, we see that the mathematical 

structure of quantum mechanics defined over a tensor product of two Hilbert Spaces provides the 

theoretical explanation and is profoundly linked to entanglement manifested as ISC states. 

Moreover, the theory not only explains intuitively the Pauli exclusion principle but also predicts that 

experimentally, if a beam of spin 1 composite particles in the triplet state is passed through a Stern-

Gerlach device, it should divide into the three separate spins states +1, 0, -1 with probabilities 
1

4
,

1

2
,

1

4
 

and not 
1

3
,

1

3
,

1

3
 as is currently believed. Admittedly, the experiment becomes very complicated if 

these spin 1 particles are charged (like deuterons). 

Also, based on the notion of ISC states, it follows that, in principle, it should be possible to create 

superfluids composed of proton Cooper pairs or, in other words, of paired hydrogen ions. This is 

reinforced by the recent announcement of simulated Cooper pairs using Strontium atoms [25] and 

[26]. 

Finally, the role of Casimir forces has been hinted at as a fundamental backdrop that mediates 

many quantum interactions, and indeed, given its overall tendency to bring bodies together, one 

might also wonder if it is not the basic cause of gravity. It is a question that remains open and 

suggests an exciting way forward for future physics. 
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Appendix: Entanglement, Perfect Correlations and ISC States 

The introduction to this article pointed out that ISC states are rotationally invariant and perfectly 

correlated. They are two different concepts, and the reader might be wondering how ISC states 

generally differ from other perfectly correlated states (usually referred to as GHZ states). To 

motivate this section, the author will refer to the famous paper “Bell’s theorem without 

inequalities” by Greenberger, Horne, Shimony, and Zeilinger [7]. For simplicity, we will use the 

acronym GHSZ when referring to this article. 

Following GHSZ, an entangled state is such that “it cannot be written in any way as a product of 

single-particle states"(p1132). In other words, when a state is entangled, it cannot be written in the 

form 

|𝜓⟩ = |𝜓1⟩|𝜓2⟩ … |𝜓𝑛⟩. 

For example, if |𝜓1⟩ , |𝜓2⟩  and |𝜓3⟩  combine to form an unentangled state, then its tensor 

product can be written as 

|𝜓⟩ = |𝜓1⟩|𝜓2⟩|𝜓3⟩. 

In contrast, there are different degrees of entanglement. For the three states |𝜓1⟩, |𝜓2⟩ and 

|𝜓3⟩: 

|𝜓1⟩(|𝜓2⟩|𝜓3⟩ + |𝜓3⟩|𝜓2⟩) 

is an entangled state as is 

|𝜓1⟩|𝜓2⟩|𝜓3⟩ + |𝜓2⟩|𝜓3⟩|𝜓1⟩ + |𝜓3⟩|𝜓1⟩|𝜓2⟩. 

In general, if we are in the space 𝐶3, defined over the complex numbers, a threefold entangled 

state can be written as a linear combination of 33 = 27 (complex) terms in the form 

∑𝛼𝑖𝑗𝑘|𝜓𝑖⟩|𝜓𝑗⟩|𝜓𝑘⟩ , 

where each 𝑖, 𝑗, 𝑘, ∈ {1,2,3}. From a mathematical point of view, depending on the values of 𝛼𝑖𝑗𝑘 

there are an infinite number of three-particle entangled states. In practice, we focus on certain 

specific states of interest in physics. For example, if 𝑖 ≠ 𝑗 ≠ 𝑘, then it will reduce to a state of only 

six terms, and if we further require that it be composed of indistinguishable terms, it will reduce to 

a Fermi-Dirac state. It remains an open question whether every possible mathematically entangled 

state can be physically realized. 

If 𝑖, 𝑗, 𝑘 are restricted to only two values, then the threefold entangled state can be written as a 

linear combination of 23 = 8 terms, as with the GHZ state defined by equation (G1) of GHSZ. It is 

given by 

1

4
[(1 − 𝑖𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑⟩1)|𝑒⟩2|𝑓⟩3 + (𝑖 − 𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑⟩1)|𝑒⟩2|𝑓′⟩3 (24) 
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+(𝑖 − 𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑⟩1)|𝑒′⟩2|𝑓⟩3 + (−1 + 𝑖𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑⟩1)|𝑒′⟩2|𝑓′⟩3 (25) 

+(𝑖 − 𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑′⟩1)|𝑒⟩2|𝑓⟩3 + (−1 + 𝑖𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑′⟩1)|𝑒⟩2|𝑓′⟩3 (26) 

+(−1 + 𝑖𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑′⟩1)|𝑒′⟩2|𝑓⟩3 + (−𝑖 + 𝑒𝑖(𝜓1+𝜓2+𝜓3)|𝑑′⟩1)|𝑒′⟩2|𝑓′⟩3]. (27) 

These states are particularly interesting in that they represent the evolution of the GHZ state 

given by 

|𝜓⟩ =
1

√2
[|𝑎⟩1|𝑏⟩2|𝑐⟩3 + |𝑎′⟩1|𝑏′⟩2|𝑐′⟩3 , (28) 

where |𝑎⟩1 →
1

√2
[|𝑑⟩1 + 𝑖|𝑑′⟩1]  and |𝑎′⟩1 →

1

√2
[|𝑑′⟩1 + 𝑖|𝑑⟩1].  It should be apparent from this 

transformation that. |𝜓⟩ is not rotationally invariant, even when 𝜙1 + 𝜙2 + 𝜙3 = 0, whereas when 

projected into a two-dimensional state with 𝜙1 + 𝜙2 = 𝑛𝜋 it is rotationally invariant under (𝑅, 𝑅𝑇), 

where 𝑅 is a two-dimensional rotation matrix. 

It should also be noted that equation (28) is similar in form to equation (4). Indeed, if the ISC 

state existed, it would be a particular case for a GHZ state. However, there is a difference. The 

general GHZ state for three particles presupposes that if we measure (observe) the states |𝑎⟩ and 

|𝑏⟩ then |𝑐⟩ would be determined by the other two. However, in the case of an ISC state, we require 

that the measurement of one state would determine the other two. In other words, if we were to 

observe |𝑎⟩ then both |𝑏⟩ and |𝑐⟩ would be determined in the same direction of measurement. The 

authors of GHSZ paper seem aware of this. In their Appendix A, they point out and prove the 

rotational invariance of the singlet state (equation (A3)). Moreover they imply (although they do 

not develop it further) that there is a difference between ISC states (my terminology) and “a 

rotationally invariant mixture of product states, which will not yield correlations as strong as [the 

singlet] |𝜓⟩ does.” They proceed to give an example in Appendix B. Finally, we note that in terms of 

GHZ states, rotational invariance is only applied to the two-particle singlet state (paired qubits). 

There is no reference to other GHZ states being rotationally invariant; instead they refer to polarized 

states. The Fermi-Dirac state defined in Theorem 3 (below) is rotationally invariant but is only an 

ISC state for n = 2. 

It might seem like quite a tall order to expect one measurement (observation) to yield 𝑛 pieces 

of information, and certainly when it comes to quantum mechanics, it is not possible. However, if 

hidden variables in Bell’s sense (or Einstein’s sense) existed, then it would likely be possible to have 

𝑛-ISC states for 𝑛 ≥ 2. To see this, consider by way of analogy, the state of the circumference of 𝑛 

identical circles, all of radius 𝑟. If 𝑟 is unknown then by measuring the radius of one circle, we will 

know the radius of all the others. Indeed, because the radius constitutes a parameter of the circle, 

knowing the parameter's value allows us to independently draw as many circles as we wish of the 

same radius. It is sufficient to choose 𝑛 distinct center points and draw 𝑛 identical circles of radius 

𝑟  with the compass. If hidden parameters had existed in Einstein’s sense, then in principle by 

knowing the characteristics of the parameters for each spin state, it would be possible to have 𝑛 

isotropically independent spin states. In other words, the correlations would be a mere 

epiphenomenon in that one does not need to know about correlations in order to make 𝑛 
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independent copies. It is sufficient to repeat the same rules over and over again, without in any way 

referencing the previous construction. In the case of the 𝑛 circles of radius 𝑟, any pair of circles 

(states) is a mirror images one of the other, but that information is not necessary to construct the 

𝑛 independent circles. In this case, the correlation between them is a secondary consequence of 

the construction. In contrast, the proof of Theorem 1 shows that it is impossible to have three or 

more ISC states; in the case of two, there is no hidden parameter to define the twin-like quality of 

the ISC states. They are intrinsically correlated by mathematical group properties that only hold for 

paired states. Consequently, ISC states upto isomorphism must occur in pairs and are characterized 

by correlations and not hidden parameters. ISC correlations are something completely new. 

It should also be apparent from the proof of Theorem 1 that we are not saying that GHZ states 

given by equations (28) and (4) do not exist. We are saying that they do not exist as rotationally 

invariant states nor as ISC states. Indeed, GHSZ refers to the singlet state as a rotational invariant 

state (c.f. Sections 2 and the Appendices A and B). In contrast, they refer to GHZ states composed 

of three (or more particles) as exhibiting “polarization correlations” (p.1138). In other words, 

polarization refers to correlations in specific directions, while ISC states are correlated 

simultaneously in all directions. The thesis of this article is that it is precisely the two ISC states that 

are formed when materials superconduct. Apart from the two ISC states discussed in this article, all 

other GHZ states exhibit some form of polarization, which can be realized in the laboratory in 

different ways according to the experimental apparatus used to produce such states. Section VI of 

GHSZ provides an experimental example of how such a state might be obtained in ‘real 

experiments.’ The ISC states are uniquely rotationally invariant and perfectly correlated in the sense 

of GHSZ. The other GSZ states are not rotationally invariant, although they obey other group 

properties that reflect their degree of polarization. For example, the GHZ states given by equation 

(28) and their evolved states are not invariant under rotations, but they are invariant under the 

action of the group of order eight 𝒵2 × 𝒵2 × 𝒵2. 

It might be asked if there are higher dimensional states that are also rotationally invariant. 

Indeed, the Fermi-Dirac state is (uniquely) invariant under the action of the 𝑆𝐿(𝑛, 𝐶) group, which 

a fortiori means that it is invariant for all subgroups of 𝑆𝐿(𝑛, 𝐶), including the rotation group. It 

should be noted that for two-dimensional subspaces of 𝐶𝑛 , there are two rotationally invariant 

states and not one. This arises from the mathematical properties associated with Clifford algebras. 

In general, if 𝒖 and 𝒗 are two vectors in 𝐶𝑛 then we can define a Clifford product by 

𝐮𝐯 = 𝐮. 𝐯 + 𝐮 ∧ 𝐯. 

The first term corresponds to an inner product, which can be defined for any pair of vectors, and 

such a product is always rotationally invariant. However, there is no inner product for three vectors 

𝐮, 𝐯, 𝐰, meaning that 𝐮, 𝐯, 𝐰, is not defined. In contrast, outer (wedge) products are defined over 

𝑛-dimensions and correspond geometrically to volume (area in 2-dim), preserved under rotations. 

This leads to the invariance of the Fermi-Dirac state under 𝑆𝐿(𝑛, 𝐶) as proven in the following 

theorem: 

Theorem 3. Let 𝑉 = 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑛 , where each 𝑉𝑖  is an n-dimensional vector space, and 𝑇 =

𝑇1 ⊗ ⋯ ⊗ 𝑇𝑛 where for each 𝑖, 𝑗, 𝑇𝑖 = 𝑇𝑗 and 𝑇𝑖 is a linear operator on 𝑉𝑖. Let 
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𝑣 ≡ 𝑣1 ∧ 𝑣2 ∧ … ∧ 𝑣𝑛

 = (

𝑣11

⋮
𝑣𝑛1

) ∧ (

𝑣12

⋮
𝑣𝑛2

) ∧ … ∧ (

𝑣1𝑛

⋮
𝑣𝑛𝑛

)
 

then for 𝑣 ≠ 0 

𝑇𝑣 = 𝑣 ⇔ 𝑇 ∈ ⨂1
𝑛𝑆𝐿(𝑛, 𝒞). 

Fermi-Dirac statistics is invariant under the action of 𝑆𝐿(𝑛, 𝒞). 

Proof: Let {𝐞1, 𝐞2 … 𝐞n} be an orthonormal basis of 𝑉𝑖, then 

𝑣 = (

𝑣11

⋮
𝑣𝑛1

) ∧ (

𝑣12

⋮
𝑣𝑛2

) ∧ … ∧ (

𝑣𝑛1

⋮
𝑣𝑛𝑛

)

= |𝑣|𝐞1 ∧ 𝐞2 ∧ … ∧ 𝐞𝑛 ,

 

where 

|𝑣| = |

𝑣11 𝑣12 ⋯ 𝑣1𝑛

𝑣21 𝑣22 ⋯ 𝑣2𝑛

⋮ ⋮ ⋮ ⋮
𝑣𝑛1 𝑣𝑛2 ⋯ 𝑣𝑛𝑛

|. 

The linearity of 𝑇 gives 

𝑇𝑣 = |𝑣|𝑇1𝐞1 ∧ 𝑇2𝐞2 ∧ … ∧ 𝑇𝑛𝐞n

= |𝑣| (

𝑡11

⋮
𝑡𝑛1

) ∧ (

𝑡12

⋮
𝑡𝑛2

) ∧ … ∧ (

𝑡𝑛1

⋮
𝑡𝑛𝑛

)

= |𝑣||𝑇1|𝐞1 ∧ 𝐞2 ∧ … ∧ 𝐞𝑛, 𝑇1 = 𝑇2 = ⋯ = 𝑇𝑛 .

 

Therefore, since 𝑣 ≠ 0 implies |𝑣| ≠ 0 then 

𝑇𝑣 = 𝑣 ⇒ |𝑇1| = 1 and 𝑇1 ∈ 𝑆𝐿(𝑛, 𝒞). 

Conversely 

𝑇1 ∈ 𝑆𝐿(𝑛, 𝒞) ⇒ 𝑇𝑣 = 𝑣 . 

This proves the theorem. It is also shown in [4] that 𝑣 is unique. 
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