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Abstract 

The article aims to develop the stochastic interpretation of quantum mechanics by E. Nelson 

based on balancing the intra-systemic contradiction (i.e., antisymmetry) between “order” and 

“chaos”. For the set task, it is proposed to combine two mutually opposite system-forming 

principles: “the principle of least action” and “the principle of maximum entropy” into one, 

the “principle of averaged efficiency extremum”. In a detailed consideration of the averaged 

states of a chaotically wandering particle, the time-independent (stationary) and time-

dependent stochastic Schrödinger-Euler-Poisson equations are obtained as conditions for 

finding the extremals of the globally averaged efficiency functional of the stochastic system 

under study. The resulting stochastic equations coincide with the corresponding Schrödinger 

equations up to coefficients. In this case, the ratio of the reduced Planck constant to the 

particle mass is expressed through the averaged characteristics of a three-dimensional 

random process in which the considered wandering particle participates. The obtained 

stochastic equations are suitable for describing the quantum states of stochastic systems of 

any scale. 
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1. Background and Introduction 

Several dozen interpretations of Quantum Mechanics (QM) exist in modern physics. Each has its 

advantages and disadvantages. Still, none is precisely defined since many researchers often put 

different meanings into the same concepts. 

One of the reasons for this situation in quantum physics is associated with a different attitude to 

the wave function 𝛹(𝑥, 𝑡). 

Most experts agree with M. Born's statement that the square of the modulus of the wave 

function of a particle 𝛹(𝑥, 𝑡) is equal to the probability density function (PDF) of the particle's 

location at a point 𝑥 

|𝛹(𝑥, 𝑡)|2 = 𝜌(𝑥, 𝑡). 

However, it should be borne in mind that, in general, this PDF is composed of several factors 

associated with the measurement process. 

|𝛹(𝑥, 𝑡)|2 = 𝜌(𝑥, 𝑡) = 𝑓[𝜌𝑝(𝑥, 𝑡), 𝜌𝑚(𝑥, 𝑡), 𝜌𝑒(𝑥, 𝑡), 𝜌𝑑(𝑥, 𝑡), 𝜌𝑜(𝑥, 𝑡)], (0.1) 

where 

𝜌𝑝(𝑥, 𝑡) is the PDF associated with the chaotic behavior of the particle; 

𝜌𝑚(𝑥, 𝑡) is the PDF associated with the method errors; 

𝜌𝑒(𝑥, 𝑡) is the PDF associated with the influence of the external environment; 

𝜌𝑑(𝑥, 𝑡) is the PDF associated with the instrument errors; 

𝜌𝑜(𝑥, 𝑡) is the PDF associated with the operator errors. 

An example of functional dependence (0.1) is the PDF. 

|𝛹(𝑥, 𝑡)|2 = 𝜌(𝑥, 𝑡) =
1

√2𝜋[𝜎𝑝𝑥
2 + 𝜎𝑚𝑥

2 + 𝜎𝑒𝑥
2 + 𝜎𝑑𝑥

2 + 𝜎𝑜𝑥
2 ]

𝑒𝑥𝑝 {−
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} , (0.2)

 

where 

𝜎𝑖𝑥
2 = 𝜎𝑖𝑥

2 (𝑡) = ∫ 𝜌𝑖

+∞

−∞

(𝑥, 𝑡)𝑥2𝑑𝑥 (here 𝑖 = p,m,d,o),  

is a variance of the 𝑖-th influencing factor on the 𝑋 axis measurement result.
 All of the above factors are present when measuring the physical characteristics of particles of 

any scale. However, these factors affect the result differently depending on the particle size. 

At the same time, almost all specialists who study the properties of non-relativistic pico-particles 

(i.e., particles with characteristic sizes of atomic and subatomic scales, 10-8 – 10-13 cm) use the same 
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mathematical apparatus of quantum mechanics (QM), designed to predict possible configurations 

and evolutions of wave functions 𝛹(𝑥, 𝑡) of one particle or an ensemble of identical particles. 

Focusing on certain factors influencing the measurement process using the same mathematical 

apparatus leads to different interpretations of QM. 

For example, in several experiments, pico-particles are extremely sensitive to the influence of 

the measuring system and the observer on them. The effects associated with the fact that the 

operator, by his presence, introduces parasitic capacitance and inductance into radio-electronic 

devices, which leads to an imbalance of electronic resonators, etc., are widely known. 

In this case, the wave function (0.1) should consider all influencing factors. At the same time, the 

methodology for perceiving the results obtained is most consistent with the Copenhagen 

interpretation of QM, formulated by Niels Bohr and Werner Heisenberg. 

In other experiments, the factors interfering with the measurement are so insignificant that they 

can be neglected. For example, we judge the possible states of an electron in a hydrogen atom by 

its emission spectrum. If we abstract from the slight broadening of the spectral lines associated with 

the influence of various accompanying factors, then in this case PDF (0.1) takes the form 

|𝛹(𝑥, 𝑡)|2 = 𝜌(𝑥, 𝑡) = 𝑓[𝜌𝑝(𝑥, 𝑡)𝜌𝑒(𝑥, 𝑡)]. 

This wave function characterizes only the properties of the electron itself, taking into account 

the influence of the vacuum, leading to the Lamb shift of the spectral lines. 

In this article, we will adhere to the Stochastic interpretation of quantum mechanics, most clearly 

expressed in the works of Edward Nelson [1-3], published in 1966-1985.  

In addition to E. Nelson, this interpretation of QM was developed by R. Fürth [4], I. Fényes [5], 

W. Weizel [6], M. Pavon [7], K. Namsrai [8]. An alternative stochastic interpretation of QM was 

designed by R. Tsekov [9, 10]. S. Milz & K. Modi [11] 

Among the more recent works on stochastic quantum mechanics, the articles by J. Lindgren &  

J. Liukkonen (2019) [12] and T. Koide & T. Kodama (2018) [13], F. Kuipers (2023) [14] should be 

noted.  

Nelson's stochastic interpretation is associated with the logical construction of QM by analogy 

with the theory of Brownian motion [more precisely, the Ornstein-Uhlenbeck process]. 

In Nelson's interpretation, the reason for the chaotic behavior of a pico-particle is associated 

with the effect of vacuum fluctuations on it. The diffusion coefficient of such a stochastic process 

turns out to be imaginary due to the absence of friction and the specificity of the vacuum viscosity. 

Thus, in the stochastic interpretation of QM, the primary is not the wave function 𝛹(𝑥, 𝑡) but 

complex small-scale curvatures of the space-time continuum (i.e., the Wheeler-Bohm-Vigier 

“quantum foam”), which affect to the colloidal pico-particle. 

In this case, PDF (0.1) takes the most straightforward form 

|𝛹(𝑥, 𝑡)|2 = 𝜌(𝑥, 𝑡) = 𝜌𝑒(𝑥, 𝑡) = 𝜓(𝑥, 𝑡)𝜓
∗(𝑥, 𝑡), (0.3) 

since it characterizes only the chaotic behavior of a structureless particle under the influence of a 

turbulent environment. 

Recall that the Langevin and Fokker-Planck stochastic equations describe Brownian motion 

without considering the structure of particles and the uncertainty associated with measurement 

errors. However, a fundamental difference exists between Brownian particles (~10-4 cm) and pico-
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particles (~10-8 – 10-13 cm). Brownian (colloidal) particles can be observed practically without 

affecting them with a microscope, while pico-particles, in principle, cannot be observed directly. 

In this article, the maximally simplified (more precisely, not taking into account the measurement 

error and the influence of other particles) probability amplitude (PA) 𝛹(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) will be called 

the “pure” wave function. 

It should be noted that in most books and textbooks on quantum mechanics, initially, the PA 

𝛹(𝑥, 𝑡) means the “pure” wave function of the particle. This is one of the reasons for the lack of 

agreement between theorists, experimenters, and specialists working in various fields of quantum 

physics. It was the attitude to the “pure” or “impure” wave function 𝛹(𝑥, 𝑡)  that caused the 

disputes between A. Einstein (who studied Brownian motion in his youth) and N. Bohr (whose early 

works were associated with atomic emission spectra). 

So, in this article, under the stochastic interpretation of quantum mechanics by Edward Nelson, 

we mean a version of QM in which the wave function 𝜓(𝑥, 𝑡)  characterizes only the chaotic 

behavior of a wandering particle under the influence of environmental fluctuations, without taking 

into account measurement errors and the influence of the operator. This particle (like a Brownian 

corpuscle) has a volume and a chaotic motion trajectory. In this case, the wave function 𝜓(𝑥, 𝑡) has 

the statistical character attributed to it by M. Born. 

At the same time, it is taken into account that within the framework of Nelson’s stochastic 

interpretation of the QM, the “pure” PA 𝜓(𝑥, 𝑡) turns out to be a kind of “intellectual thing-in-

itself”. This is because the “pure” wave function 𝜓(𝑥, 𝑡) can be found only by solving stochastic 

differential equations. Any attempt to perform a measurement will lead to a partial distortion or 

destruction of the stochastic system under study and, hence, to a change in its PA 𝜓(𝑥, 𝑡). 

This article attempts to develop the foundations of mass-independent stochastic quantum 

mechanics (MSQM), which is a development of Nelson's stochastic quantum mechanics (SQM)  

[1-3], and proposes a solution to the problem of measuring “pure” parameters of stochastic 

quantum systems. 

The article attempts to exclude mass from all the physical quantities and constants mentioned 

here. This is one of the steps in the program of complete clearing of physics from the concept of 

“mass” and its dimension “kilogram” (or “pound”, etc.), since this phenomenological concept, in the 

author's opinion, is superfluous and hinders the development of fully geometrized physics. 

A probabilistic model of a chaotically wandering particle (ChWP) is considered, which, like the 

pico-particle by E. Nelson [1], has a volume and a continuous trajectory of motion. However, 

compared to the SQM [2], the MSQM has no restrictions on the investigated particle size. Based on 

this model (by the calculus of variations method, different from [1]), stochastic Eq.s (37), (41), (67), 

(68) are derived, which are a generalization of the Schrödinger equations, and also was obtained 

Eq. (73) corresponding to the form of the diffusion equation (a particular case of the Fokker-Planck-

Kolmogorov equation). 

The author believes the main advantage of the obtained stochastic equations is that they are 

suitable for describing the averaged quantum states of chaotically wandering particles (ChWP) of 

any scale and quality. For example, this approach is ideal for describing quantum effects when 

averaging the chaotic displacements of the geometric (or hypothetical) center: the tip of a tree 

branch under the influence of wind blows or random displacements of the center of the planet's 

core, or changes in stock prices on the stock exchange, or displacement concentration of the 

student's attention from the subject of study, etc. 
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In recent years, many advances have been made in analyzing stochastic nonlinear Schrödinger 

equations. In paper [15], the authors discovered a symplectic structure on the Wasserstein density 

manifold of the stochastic nonlinear Schrödinger equation. Graph-based discretization was 

proposed in [16] to preserve such a structure numerically. The stochastic dispersion relation and 

the associated optimal control problem were reported in [17]. More recently, in [18], the authors 

showed the correctness of stochastic logarithmic Schrödinger equations governed by general 

multiplicative noise. 

The article is based on the assertion that the dichotomy “Order and chaos” affects any stochastic 

system (including a chaotically wandering particle of any scale, for example, a fish in a round 

aquarium, the center of mass of the planet’s core, the nucleus of a biological cell, a mosquito in a 

swarm of mosquitoes, electron in an atom, center of mass of the yolk in an egg, Brownian particle 

in a colloidal solution, etc.). 

The concept of “order” is formalized through the “principle of least action”, and the idea of 

“chaos” is formalized through the “principle of maximum entropy”. The article proposes to combine 

these principles into one “principle of extremum of average efficiency.” This principle made it 

possible to write down the function of the globally averaged “efficiency” of a chaotically wandering 

particle. In this case, the extremal equations for this function in a particular case are the Schrödinger 

equations, in which the ratio of Planck’s constant to the particle mass (ℏ 𝑚)⁄  is replaced by the ratio 

of the averaged parameters of the random process under study (standard deviation σ to the 

autocorrelation coefficient) 

ℏ

𝑚
≈
2𝜎2

𝜏𝑎𝑐𝑜𝑟
 

This makes it possible to use the obtained stochastic equations (including the Schrödinger 

equations) to study the averaged behavior of a chaotically wandering particle of any scale. For 

example, this approach is suitable for describing quantum effects when averaging chaotic 

movements of a geometric (or hypothetical) center: the tip of a tree branch under the influence of 

wind blows or random displacements of the center of the planet’s core, or fluctuations in the stock 

price on the stock exchange, or a shift in the student’s concentration from the subject of study and 

so on. 

The main achievement of this article is the analytical derivation of the Schrödinger-Euler-Poisson 

equation, which is suitable for describing stochastic processes and quantum effects of any scale. In 

particular, under certain conditions, the Schrödinger-Euler-Poisson equation is transformed into the 

Schrödinger equations up to coefficients. It has not been possible to derive the Schrödinger 

equations practically since their appearance in 1925. At the same time, in deriving the Schrödinger-

Euler-Poisson equation, it was possible to understand many features of random processes and 

quantum phenomena, both the microworld and the macroworld. 

2. Method 

Stochastic objects (systems) are formed while simultaneously striving for “order” and “chaos” 

[19, 20]. This is due to the influence of two mutually opposite system-forming factors on any 

stochastic object: the “principle of least action” and the “principle of maximum entropy”. Stochastic 
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systems' opposite tendency to “order” and “chaos” leads them to equilibrium, optimization, energy 

saving, energy efficiency, and space-time symmetry. 

In this article, an attempt is made to combine the two above-mentioned mutually opposite 

(antisymmetric) principles into one, the “principle of averaged efficiency extremum” (PAEEx), which 

is internally balanced concerning “determinism” (i.e., predetermination) and “randomness”. This 

new principle theoretically substantiates the empirically manifested advantage of symmetric states 

of the free stochastic objects. 

2.1 Probabilistic Model of a Wandering Particle 

Consider a solid particle with volume and trajectory of motion. Suppose that under the influence 

of fluctuations of the environment, the particle constantly wanders chaotically in the vicinity of the 

conditional center, combined with the origin of the coordinate system XYZ (see Figure 1).  

 

Figure 1 a) A simplified model of the solid particle (more precisely, the geometric or 

hypothetical center of the object) that wanders chaotically in the vicinity of the 

conditional center due to the random force influences of the fluctuating environment. 

b) Examples of a chaotically wandering particle (ChWP), whose deviation from the 

center creates environmental tensions. 

Such a chaotically wandering particle (ChWP) can be attributed to random displacements in three 

spatial (or conditional, phase) measurements with time of the geometric (or hypothetical) center 

of the following objects or subjects: of a valence electron in a hydrogen-like atom, of an oscillating 

atom in a crystal lattice, of a trembling nucleus of a biological cell, of a fluttering heart in the chest 

of an animal, of a fluttering yolk in a chicken egg, of a fluttering moth in the vicinity of a burning 

lamp, of floating fish in the aquarium, of a shifting mosquito swarm, of a flying mosquito in a swarm, 

of a trembling organelle in the cytoplasm, of an oscillating biological cell in living tissue, of a vibrating 

incandescent core in the bowels of the planet, of a wandering pollen in diluted sugar syrup, of a 



Recent Progress in Materials 2024; 6(2), doi:10.21926/rpm.2402014 
 

Page 7/51 

rushing air bubble in a boiling liquid, of a wiggling embryo in the womb, of a shifting school of fish 

in the ocean, of a moving astronaut in a space station module, of a shifting galaxy in outer space, of 

a fluttering flower in the wind, a fluctuating cost of service in the labor market, changes in public 

opinion regarding a social problem, distractions from a situation which a scientist is trying to solve, 

etc. 

In other words, the random behavior of most of the 3-dimensional objects, subjects, and systems 

surrounding us in the presence of a geometric (or hypothetical) center and a sufficiently large 

observation period can be interpreted as the behavior of the chaotic wandering particle (ChWP) in 

a 3-dimensional actual (or phase) space. Therefore, the conclusions made in this article are universal 

and apply to stochastic objects and subjects of any scale and quality. 

Let's consider such a chaotically wandering particle (ChWP) as a stochastic system distributed in 

a 3-dimensional space, with a conventionally distinguished center at the origin of the coordinate 

system (see Figure 1). 

Suppose that the total mechanical energy of the ChWP 𝑊(𝑣, 𝑥, 𝑦, 𝑧, 𝑡)  at a point with 

coordinates 𝑥, 𝑦, 𝑧 and at time 𝑡 is equal to 

𝑊(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) + 𝑈(𝑥, 𝑦, 𝑧, 𝑡) ± ƹ(𝑥, 𝑦, 𝑧, 𝑡), (1) 

where 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡)  is the kinetic energy of a particle, which is determined by the velocity 

𝑣(𝑣𝑥, 𝑣𝑥 , 𝑣𝑥; 𝑥, 𝑦, 𝑧, 𝑡), at time 𝑡 at a point with coordinates 𝑥, 𝑦, 𝑧 (see Figure 1); 𝑈(𝑥, 𝑦, 𝑧, 𝑡) is the 

potential energy of a particle associated with the elasticity of its environment (or other factors) that, 

on average, tends to return this particle to the conditional center of the considered distributed 

stochastic system (see Figure 1); ƹ(𝑥, 𝑦, 𝑧, 𝑡) is the energy that a particle receives or gives up for a 

short time when interacting with a chaotically fluctuating environment. This interaction energy can 

initially be spent on elastic deformations and/or a change in the angular velocity of rotation of a 

particle, but then it, in different fractions, randomly transforms into kinetic energy 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) 

and/or potential energy 𝑈(𝑥, 𝑦, 𝑧, 𝑡) of the ChWP. 

The chaotically fluctuating environment surrounding the ChWP (i.e., the geometric center of a 

stochastic object or subject) can be a gas, a boiling liquid, a society, a securities market, etc. In the 

case of an elementary particle, a fluctuating space-time continuum (or a seething physical vacuum) 

can be considered a medium, as shown in the articles of E. Nelson [1-3]. 

Let’s represent Ex. (1) in the form 

𝑊(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) ∓ ƹ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) + 𝑈(𝑥, 𝑦, 𝑧, 𝑡). (2) 

Denote the left side of this expression as follows 

𝐸(𝑥, 𝑦, 𝑧, 𝑡) = 𝑊(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) ∓ ƹ(𝑥, 𝑦, 𝑧, 𝑡) (3) 

and we will call it the “mechanical energy” of the ChWP. 

In this case, the all three energies of the ChWP: 𝐸(𝑥, 𝑦, 𝑧, 𝑡), 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) and 𝑈(𝑥, 𝑦, 𝑧, 𝑡) are 

random variables, but such that at each point of the considered region of space, the averaged 

equality is fulfilled 

< 𝐸(𝑥, 𝑦, 𝑧, 𝑡) > = < 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) > + < 𝑈(𝑥, 𝑦, 𝑧, 𝑡) >, (4) 
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𝑜𝑟 < 𝑇(𝑣, 𝑥, 𝑦, 𝑧, 𝑡) > + < 𝑈(𝑥, 𝑦, 𝑧, 𝑡) > –< 𝐸(𝑥, 𝑦, 𝑧, 𝑡) > = 0, (5) 

where <> – means local averaging, i.e., averaging in the vicinity of a point with coordinates 𝑥, 𝑦, 𝑧, 

located in the interior of a distributed stochastic system (see Figure 1). 

Eq. (4) means that the additional energy ±ƹ(𝑥, 𝑦, 𝑧, 𝑡), which the particle receives or gives up 

when interacting with the bubbling environment, is randomly redistributed over time between its 

kinetic and potential energies. 

If the speed of movement of the ChWP 𝑣(𝑣х, 𝑣𝑦 , 𝑣𝑧) is small compared to the speed of light, then 

according to nonrelativistic mechanics, it has kinetic energy 

𝑇(𝑝х, 𝑝𝑦, 𝑝𝑧 , 𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑣х, 𝑣𝑦 , 𝑣𝑧 , 𝑥, 𝑦, 𝑧, 𝑡) =
𝑚[𝑣х

2(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣у
2(𝑥, 𝑦, 𝑧, 𝑡) + 𝑣𝑧

2(𝑥, 𝑦, 𝑧, 𝑡)]

2
, 

where 𝑝𝑖 = 𝑚𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡)  are the instantaneous value of the 𝑖 -th component of the ChWP 

momentum vector at time 𝑡 and a point with coordinates 𝑥, 𝑦, 𝑧 (Figure 1); 𝑚 is the mass of the 

particle. 

The form of the locally averaged potential energy of the ChWP < 𝑈(𝑥, 𝑦, 𝑧, 𝑡) > is not specified 

at this stage of the study. Аs an example, оne of the possible types of < 𝑈(𝑥, 𝑦, 𝑧, 𝑡) > is used in 

§3.6 in [21](arXiv:1702.01880). 

Let’s integrate Eq. (5) over time 

∫ [< 𝑇(𝑝𝑥, 𝑝𝑦, 𝑝𝑧 , 𝑥, 𝑦, 𝑧, 𝑡) > +< 𝑈(𝑥, 𝑦, 𝑧, 𝑡) > −< 𝐸(𝑥, 𝑦, 𝑧, 𝑡) >]
𝑡2

𝑡1

𝑑𝑡 = 0, (6) 

and we will call this expression «the locally averaged balance of the stochastic system». 

To simplify mathematical calculations, let us consider a one-dimensional case without loss of 

generality (WLOG) of conclusions (in the case of three dimensions, only the number of integrations 

increases), while the locally averaged balance (6) takes on a simplified form 

< 𝑆(𝑥, 𝑡1, 𝑡2) >= ∫ [< 𝑇(𝑝𝑥, 𝑥, 𝑡) > +< 𝑈(𝑥, 𝑡) > −< 𝐸(𝑥, 𝑡) >]
𝑡2

𝑡1

𝑑𝑡, (7) 

where the random characteristics of the ChWP: 𝐸(𝑥, 𝑡) , 𝑇(𝑥, 𝑡)  and 𝑈(𝑥, 𝑡)  meet the energy 

balance condition < 𝐸(𝑥, 𝑡) >=< 𝑇(𝑝𝑥, 𝑥, 𝑡) > +< 𝑈(𝑥, 𝑡) >, acting in the neighborhood of each 

point with coordinate x. 

2.2 Globally Averaged Efficiency of the ChWP  

Let's perform a global averaging of the locally averaged balance (7) over the entire region of the 

X-axis in which the ChWP moves (see Figure 1) 

< 𝑆𝑥(𝑡1, 𝑡2) >= ∫ [< 𝑇(𝑝𝑥, 𝑥, 𝑡) > + < 𝑈(𝑥, 𝑡) > − < 𝐸(𝑥, 𝑡) >]
𝑡2

𝑡1

𝑑𝑡. (8) 

Integration and averaging operations are commutative; therefore, Ex. (8) can be represented as 
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< 𝑆𝑥(𝑡1, 𝑡2) >= ∫ [< 𝑇(𝑝𝑥, 𝑥, 𝑡) >
𝑡2

𝑡1

+ < 𝑈(𝑥, 𝑡) > − < 𝐸(𝑥, 𝑡) >]𝑑𝑡. (9) 

We represent the globally averaged kinetic energy of the ChWP in the following form 

< 𝑇(𝑝𝑥, 𝑥, 𝑡) >=
1

2𝑚
∫ 𝜌(𝑝𝑥, 𝑡)𝑝𝑥

2𝑑𝑝𝑥

∞

−∞

, (10) 

where 𝜌(𝑝𝑥, 𝑡)  is the probability density function (PDF) of the 𝑥 -component of the particle 

momentum рх. 

In Ex. (10), averaging occurs over all possible momenta 𝑝𝑥 of the ChWP, regardless of the location 

of the particle. In general, 𝜌(𝑝𝑥, 𝑡) can vary with time 𝑡. 

Let’s represent the globally averaged potential energy < 𝑈(𝑥, 𝑡) >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the globally averaged 

mechanical energy < 𝐸(𝑥, 𝑡) >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of the ChWP in the form 

< 𝑈(𝑥, 𝑡) >= ∫ 𝜌(𝑥, 𝑡) < 𝑈(𝑥, 𝑡) > 𝑑𝑥
∞

−∞

, (11) 

< 𝐸(𝑥, 𝑡) >= ∫ 𝜌(𝑥, 𝑡) < 𝐸(𝑥, 𝑡) > 𝑑𝑥
∞

−∞

, (12) 

where 𝜌(𝑥, 𝑡) is the PDF of the projection of the ChWP position on the 𝑋 axis (see Figure 1). In 

general, 𝜌(𝑥, 𝑡) can change with time 𝑡. 

Substituting globally averaged quantities (10), (11), and (12) into Ex. (9), we obtain 

< 𝑆𝑥(𝑡1, 𝑡2) >= ∫ {
1

2𝑚
∫ 𝜌(𝑝𝑥, 𝑡)𝑝𝑥

2𝑑𝑝𝑥 +∫ 𝜌(𝑥, 𝑡)[< 𝑈(𝑥, 𝑡) > − < 𝐸(𝑥, 𝑡) >]𝑑𝑥
∞

−∞

∞

−∞

}
𝑡2

𝑡1

𝑑𝑡. (13) 

Let’s exclude the unnecessary concept of “mass” from the proposed mathematical model. To do 

this, we introduce the mass-independent quantities: 

< 𝑠𝑥(𝑡1, 𝑡2) >=
< 𝑆𝑥(𝑡1, 𝑡2) >

𝑚
(14) 

is the globally averaged “𝑥-efficiency” of the ChWP; 

< 𝜀(𝑥, 𝑡) > =
< 𝐸(𝑥, 𝑡) >

𝑚
(15) 

is the locally averaged “𝑥-mechanical energiality” of the ChWP; 

< 𝑢(𝑥, 𝑡) > =
< 𝑈(𝑥, 𝑡) >

𝑚
(16) 

is the locally averaged “𝑥-potential energiality” of the ChWP; 
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< 𝑘(𝑣𝑥, 𝑥, 𝑡) >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=
< 𝑇(𝑝𝑥, 𝑥, 𝑡) >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑚
=

1

2𝑚2
∫ 𝜌(𝑝𝑥, 𝑡)𝑝𝑥

2𝑑𝑝𝑥

∞

−∞

=
1

2
∫ 𝜌(𝑣𝑥 , 𝑡)𝑣𝑥

2𝑑𝑣𝑥

∞

−∞

(17) 

is the globally averaged “𝑥-kinetic energiality” of the ChWP. 

Substituting Ex.s (14)-(17) into Ex. (13), we obtain the globally averaged x-efficiency of the ChWP, 

independent of the particle “mass”1 

〈𝑠𝑥(𝑡1, 𝑡2)〉 = ∫ {
1

2
∫ 𝜌(𝑣𝑥, 𝑡)𝑣𝑥

2𝑑𝑣𝑥 +∫ 𝜌(𝑥, 𝑡)[< 𝜀(𝑥, 𝑡) > − < 𝑢(𝑥, 𝑡) >]𝑑𝑥
∞

−∞

∞

−∞

}
𝑡2

𝑡1

𝑑𝑡. (18) 

Note that if in the system under consideration there is no chaotic behavior of the particle, i.e. it 

behaves deterministically, then integral (9) takes the form 

𝑆𝑥(𝑡1, 𝑡2) = ∫ 𝑇(𝑝𝑥, 𝑥, 𝑡) + 𝑈(𝑥, 𝑡)𝑑𝑡
𝑡2

𝑡1

 − 𝐸(𝑥, 𝑡) |
𝑡2
𝑡1
, (18а) 

and we, in fact, return to the Lagrangian formalism of classical mechanics. 

2.3 Stationary State of the ChWP  

Consider a stationary globally averaged state of the stochastic system under study, i.e., when the 

averaged behavior of the ChWP does not depend on the time 𝑡. 

In this case, the globally averaged 𝑥-efficiency of the ChWP (18) takes on a simplified form 

〈𝑠𝑥(𝑡1, 𝑡2)〉 = ∫ {
1

2
∫ 𝜌(𝑣𝑥)𝑣𝑥

2𝑑𝑣𝑥 +∫ 𝜌(𝑥)[< 𝑢(𝑥) > − < 𝜀(𝑥) >]𝑑𝑥
∞

−∞

∞

−∞

}
𝑡2

𝑡1

𝑑𝑡. (19) 

Let’s represent Ex. (19) in coordinate form. To do this, we will perform the following actions:

 1. Let’s write the PDF 𝜌(х) in the form of the product of the two probability amplitude 𝜓(𝑥): 

𝜌(𝑥) = 𝜓(𝑥)𝜓(𝑥) = 𝜓2(𝑥). (20) 

2. Let’s use the coordinate representation of the averaged 𝑥-component of the ChWP velocity 

raised to the 𝑛-th power {see (A2.12) in Appendix 2}. In particular, for 𝑛 = 2, we have 

𝑣𝑥2 = ∫ 𝜌
+∞

−∞

(𝑣𝑥)𝑣𝑥
2𝑑𝑣𝑥 = ∫ 𝜓

+∞

−∞

(𝑥) (∓𝑖𝜂𝑥
𝜕

𝜕𝑥
)
2

𝜓(𝑥)𝑑𝑥 = −𝜂𝑥
2∫ 𝜓(𝑥)

𝜕2𝜓(х)

𝜕𝑥2
𝑑𝑥

∞

−∞

, (21) 

where, according to (A2.13a) in Appendix 2 

𝜂𝑥 =
2𝜎𝑥

2

𝜏𝑥𝑐𝑜𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (22) 

                                                           
1 According to the author, the outdated heuristic concept of “mass” hinders the development of fully geometrized 
physics. Therefore, this concept should be gradually excluded from all physical representations of the surrounding reality. 
This article attempts to show how this can be done. 
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is a constant scale parameter; 𝜎𝑥  is the standard deviation of a stationary random process 𝑥(𝑡) 

associated with the projection of the position of the ChWP on the 𝑋  axis (see Figure A1.1 in 

Appendix 1): 𝜏𝑥𝑐𝑜𝑟  is the autocorrelation interval of a given random process 𝑥(𝑡). As seen from 

Figure 1 and Figure A1.1 in Appendix 1, the autocorrelation interval shows how smooth the 

investigated random process is, how fast the ChWP is moving and changing direction. The larger the 

autocorrelation interval, the lower the speed of the ChWP and the slower the change in the 

direction of its movement. 

3. Using Ex. (21), we represent the globally averaged 𝑥-kinetic energiality of the ChWP (17) in the 

form 

< 𝑘(𝑣𝑥, 𝑥) >=
< 𝑇(𝑝𝑥, 𝑥) >

𝑚
=
1

2
∫ 𝜌(𝑣𝑥)𝑣𝑥

2𝑑𝑣𝑥

∞

−∞

= −
𝜂𝑥
2

2
∫ 𝜓(𝑥)

𝜕2𝜓(х)

𝜕𝑥2
𝑑𝑥

∞

−∞

. (23) 

4. Substituting Ex.s (20) and (23) into integral (19), we obtain the functional of the globally 

averaged 𝑥-efficiency of the ChWP in the coordinate representation 

〈𝑠𝑥(𝑡1, 𝑡2)〉 = ∫ ∫ (−
𝜂𝑥
2

2
𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝜓2(𝑥)[< 𝑢(𝑥) > −< 𝜀(𝑥) >])

∞

−∞

𝑡2

𝑡1

𝑑𝑥𝑑𝑡. (24) 

2.4 Derivation of the Stationary Stochastic Euler-Poisson Equation 

Let’s find the equation for the extremals of Functional (24), i.e., and we define the condition for 

obtaining the functions 𝜓(𝑥) for which this function takes extreme values. 

Since there are no time-dependent functions in Functional (24), we will seek the condition for 

the extremality of the inner functional 

𝑤𝑥 = ∫ (−
𝜂𝑥
2

2
𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝜓2(𝑥)[< 𝑢(𝑥) > −< 𝜀(𝑥) >])

∞

−∞

𝑑𝑥. (25) 

In the calculus of variations, it was shown [22, 23] that the extremal 𝑓(𝑥) of a general functional 

𝐼(𝑓) = ∫ 𝐿(𝑥, 𝑓, 𝑓′, 𝑓′′, … , 𝑓(𝑘))
∞

−∞

𝑑𝑥, (26) 

where 𝑓′: =
𝜕𝑓

𝜕𝑥
, 𝑓′′: =

𝜕2𝑓

𝜕𝑥2
, . . . , 𝑓(𝑘): =

𝜕𝑛𝑓

𝜕𝑥𝑛
 is determined by the generalized Euler-Lagrange 

equation [22, 23]  

𝜕𝐿

𝜕𝑓
−
𝜕

𝜕𝑥
(
𝜕𝐿

𝜕𝑓′
) +

𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝑓′′
) − ⋯+ (−1)𝑘

𝜕𝑘

𝜕𝑥𝑘
(
𝜕𝐿

𝜕𝑓(𝑘)
) = 0. (27) 

However, it should be noted that under other boundary conditions, the extremal of the 

functional (26) is determined by the Euler-Poisson-Elsgolts equation ([24], P.P. 326–329, Elsgolts) 

𝜕𝐿

𝜕𝑓
−
𝜕

𝜕𝑥
{
𝜕𝐿

𝜕𝑓′
} +

𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝑓′′
} − ⋯+ (−1)𝑘

𝜕𝑘

𝜕𝑥𝑘
{
𝜕𝐿

𝜕𝑓(𝑘)
} = 0, (27a) 
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where  
𝜕

𝜕𝑥
{
𝜕𝐿

𝜕𝑓′
} =

𝜕

𝜕𝑥
(
𝜕𝐿

𝜕𝑓′
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓′
)
𝜕𝑓

𝜕𝑥
+

𝜕

𝜕𝑓′
(
𝜕𝐿

𝜕𝑓′
)
𝜕𝑓′

𝜕𝑥
+⋯+

𝜕

𝜕𝑓(𝑘)
(
𝜕𝐿

𝜕𝑓′
)
𝜕𝑓(𝑘)

𝜕𝑥
 is the first total 

partial derivative concerning 𝑥 ;  
𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝑓′′
} =

𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝑓′′
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓′′
)
𝜕2𝑓

𝜕𝑥2
+

𝜕

𝜕𝑓′
(
𝜕𝐿

𝜕𝑓′′
)
𝜕2𝑓′

𝜕𝑥2
+⋯+

𝜕

𝜕𝑓(𝑘)
(
𝜕𝐿

𝜕𝑓′′
)
𝜕2𝑓(𝑘)

𝜕𝑥𝑖
2  is the second total partial derivative concerning 𝑥, and so on. 

In the case of searching for the extremal 𝑓 = 𝜓(𝑥) of functional (25), we have a Lagrangian  

𝐿 = −
𝜂𝑥
2

2
𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝜓2(𝑥)[< 𝑢(𝑥) > − < 𝜀(𝑥) >], (28) 

depending only on 𝜓 and 𝜓′′, therefore, the generalized Euler-Lagrange equation (27) is simplified  

𝜕𝐿

𝜕𝜓
+
𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝜓′′
) = 0. (29) 

Because, in this case, all other terms in Eq. (27) are equal to zero. 

We write out the terms from Eq. (29) 

𝜕𝐿

𝜕𝜓
= −

𝜂𝑥
2

2

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 2𝜓(𝑥)[< 𝑢(𝑥) > − < 𝜀(𝑥) >], 

𝜕𝐿

𝜕𝜓′′
= −

𝜂𝑥
2

2
𝜓(𝑥). (30) 

Substituting Ex.s (30) into Eq. (29), we obtain a one-dimensional stationary stochastic Euler-

Poisson equation that does not depend on the mass of the particle 

−
𝜂𝑥
2

2

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝜓(𝑥)[< 𝑢(𝑥) > −< 𝜀(𝑥) >] = 0. (31) 

If instead of the Euler-Lagrange equation (27), we use the Euler-Poisson-Elsgolts equation (27a), 

then instead of Eq. (29) we get the equation 

𝜕𝐿

𝜕𝜓
+
𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝜓′′
} = 0, (31a) 

where  
𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝜓′′
} =

𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝜓′′
) +

𝜕

𝜕𝜓
(
𝜕𝐿

𝜕𝜓′′
)
𝜕2𝜓

𝜕𝑥2
+

𝜕

𝜕𝜕𝜓′′
(
𝜕𝐿

𝜕𝜓′′
)
𝜕2𝜕𝜓′′

𝜕𝑥2
 . 

Substituting Lagrangian (28) into Eq. (31a), in this case, we obtain the following equation for 

extremals 𝜓(𝑥) of Functional (25) 

−
3𝜂𝑥

2

4

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝜓(𝑥)[< 𝑢(𝑥) > −< 𝜀(𝑥) >] = 0. (31b) 

Eqs. (31) and (31b) differ by a factor of 3/2 in front of the first term. Further research has shown 

that the Eq. (31b) is preferable (see § 2.9). 

Consider now the 3-dimensional case. Let’s represent Functional (25) in an expanded form 

< 𝑠𝑟 >= ∫ ∫ ∫ ∫ (
−
𝜂𝑟
2

2
𝜓(𝑥, 𝑦, 𝑧)∇2𝜓(𝑥, 𝑦, 𝑧) +

+𝜓2(𝑥, 𝑦, 𝑧)[< 𝑢(𝑥, 𝑦, 𝑧) > −< 𝜀(𝑥, 𝑦, 𝑧) >]

)𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡,
∞

−∞

∞

−∞

∞

−∞

𝑡2

𝑡1

(32) 



Recent Progress in Materials 2024; 6(2), doi:10.21926/rpm.2402014 
 

Page 13/51 

where ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 is the Laplace operator; 

𝜂𝑟 =
2𝜎𝑟

2

𝜏𝑟𝑐𝑜𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (33) 

is a constant scale parameter, here for the three-dimensional case: 

𝜎𝑟 =
1

√3
√𝜎𝑥2 + 𝜎𝑦2 + 𝜎𝑧2 (34) 

is the standard deviation of the random 3-dimensional trajectory of the ChWP from the conditional 

center of the considered stochastic system (see Figure 1); 

𝜏𝑟𝑐𝑜𝑟 =
1

3
(𝜏𝑥𝑐𝑜𝑟 + 𝜏𝑦𝑐𝑜𝑟 + 𝜏𝑧𝑐𝑜𝑟) (35) 

is the autocorrelation interval of a given 3-dimensional stationary random process; see the 

explanation for Ex. (22).  

For the 3-dimensional case, the general functional (26) has the form 

𝐼[𝑓] = ∫ ∫ ∫ 𝐿(𝑥1, 𝑥2, 𝑥3, 𝑓, 𝑓1, 𝑓2, 𝑓3, 𝑓11, 𝑓22, 𝑓33)𝑑𝑥1𝑑𝑥2𝑑𝑥3

∞

−∞

∞

−∞

∞

−∞

, (35a) 

where 

𝑓𝑖 ∶=
𝜕𝑓

𝜕𝑥𝑖
, 𝑓𝑖𝑖 ∶=

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑖
=
𝜕2𝑓

𝜕𝑥𝑖
2  (i =1,2,3). (35b) 

The extremal 𝑓(𝑥1, 𝑥2, 𝑥3) of this functional is determined by the Euler-Poisson-Elsgolts equation 

([24], see P.P. 325-329, The Calculus of Variations: L. Elsgolts) 

𝜕𝐿

𝜕𝑓
−

𝜕

𝜕𝑥1
{
𝜕𝐿

𝜕𝑓1
} −

𝜕

𝜕𝑥2
{
𝜕𝐿

𝜕𝑓2
} −

𝜕

𝜕𝑥3
{
𝜕𝐿

𝜕𝑓3
} +

𝜕2

𝜕𝑥1
2 {
𝜕𝐿

𝜕𝑓11
} +

𝜕2

𝜕𝑥2
2 {

𝜕𝐿

𝜕𝑓22
} +

𝜕2

𝜕𝑥3
2 {

𝜕𝐿

𝜕𝑓33
} = 0, (35c) 

where 

𝜕

𝜕𝑥𝑖
{
𝜕𝐿

𝜕𝑓𝑖
} =

𝜕

𝜕𝑥𝑖
(
𝜕𝐿

𝜕𝑓𝑖
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓

𝜕𝑥𝑖
+

𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓1
𝜕𝑥𝑖

+
𝜕

𝜕𝑓2
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓2
𝜕𝑥𝑖

+
𝜕

𝜕𝑓3
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓3
𝜕𝑥𝑖

+
𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓11
𝜕𝑥𝑖

+
𝜕

𝜕𝑓22
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓22
𝜕𝑥1

+
𝜕

𝜕𝑓33
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓33
𝜕𝑥𝑖

(35d)

 

is the first total partial derivative concerning 𝑥𝑖  (where 𝑖 = 1,2,3); 

𝜕2

𝜕𝑥𝑖
2 {
𝜕𝐿

𝜕𝑓𝑖𝑖
} =

𝜕2

𝜕𝑥𝑖
2 (
𝜕𝐿

𝜕𝑓𝑖𝑖
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓1

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓2
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓2

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓3
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓3

𝜕𝑥𝑖
2

+
𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓11

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓22
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓22

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓33
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓33

𝜕𝑥𝑖
2

(35e)
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is the second entire partial derivative concerning 𝑥𝑖  (where 𝑖 = 1,2,3). 

From the Functional (32), we have the Lagrangian: 

𝐿 = −
𝜂𝑟
2

2
𝜓(𝑥, 𝑦, 𝑧) ( 

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
)

+𝜓2(𝑥, 𝑦, 𝑧)[< 𝑢(𝑥, 𝑦, 𝑧) > − < 𝜀(𝑥, 𝑦, 𝑧) >], (35f)

 

where in 𝑥1 = 𝑥, 𝑥2 = 𝑦,  𝑥3 = 𝑧;   𝑓(𝑥1, 𝑥2, 𝑥3) = 𝜓(𝑥, 𝑦, 𝑧), 

𝜓𝑥 ∶=
𝜕𝜓

𝜕𝑥
,  𝜓𝑦 ∶=

𝜕𝜓

𝜕𝑦
,  𝜓𝑧 ∶=

𝜕𝜓

𝜕𝑧
,  𝜓𝑥𝑥 ∶=

𝜕2𝜓

𝜕𝑥2
, 𝜓𝑦𝑦 ∶=

𝜕2𝜓

𝜕𝑦2
,  𝜓𝑧𝑧 ∶=

𝜕2𝜓

𝜕𝑧2
. (35g) 

Since Lagrangian (35f) depends only on 𝜓,𝜓𝑥𝑥 , 𝜓𝑦𝑦, 𝜓𝑧𝑧 ,  the Euler-Poisson-Elsgolts equation 

(35c) is simplified 

𝜕𝐿

𝜕𝜓
+
𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝜓𝑥𝑥
} +

𝜕2

𝜕у2
{
𝜕𝐿

𝜕𝜓𝑦𝑦
} +

𝜕2

𝜕𝑧2
{
𝜕𝐿

𝜕𝜓𝑧𝑧
} = 0, (35h) 

because all other terms in Eq. (35c) are equal to zero. 

Taking into account expression (35e), we write the terms from equation (35h) 

𝜕2

𝜕𝑥𝑖
2 {

𝜕𝐿

𝜕𝜓𝑖𝑖
} =

𝜕2

𝜕𝑥𝑖
2 (

𝜕𝐿

𝜕𝜓𝑖𝑖
) +

𝜕

𝜕𝜓
(
𝜕𝐿

𝜕𝜓𝑖𝑖
)
𝜕2𝜓

𝜕𝑥𝑖
2 +

𝜕

𝜕𝜓𝑥𝑥
(
𝜕𝐿

𝜕𝜓𝑖𝑖
)
𝜕2𝜓𝑥𝑥

𝜕𝑥𝑖
2 +

+
𝜕

𝜕𝜓𝑦𝑦
(
𝜕𝐿

𝜕𝜓𝑖𝑖
)
𝜕2𝜓𝑦𝑦

𝜕𝑥𝑖
2 +

𝜕

𝜕𝜓𝑧𝑧
(
𝜕𝐿

𝜕𝜓𝑖𝑖
)
𝜕2𝜓𝑧𝑧

𝜕𝑥𝑖
2 , (where 𝑖 = 1,2,3) (35h, a)

 

which are simplified to the expression 

𝜕2

𝜕𝑥𝑖
2 {

𝜕𝐿

𝜕𝜓𝑖𝑖
} =

𝜕2

𝜕𝑥𝑖
2 (

𝜕𝐿

𝜕𝜓𝑖𝑖
) +

𝜕

𝜕𝜓
(
𝜕𝐿

𝜕𝜓𝑖𝑖
)
𝜕2𝜓

𝜕𝑥𝑖
2 , (where 𝑖 = 1,2,3) (35h, b) 

since the rest of the terms in (35h,a) are equal to zero. 

Let’s substitute the Lagrangian (35f) into equation (35h) and preliminarily write out the terms 

from this equation, taking into account the expression (35h,b), 

𝜕𝐿

𝜕𝜓
= −

𝜂𝑟
2

2
( 
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
)

+2𝜓(𝑥, 𝑦, 𝑧)[< 𝑢(𝑥, 𝑦, 𝑧) > −< 𝜀(𝑥, 𝑦, 𝑧) >], (35i)

 

𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝜓𝑥𝑥
} = −

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+ (−

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
) = −2

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
, 

𝜕2

𝜕𝑦2
{
𝜕𝐿

𝜕𝜓𝑦𝑦
} = −

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+ (−

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
) = −2

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
, 

𝜕2

𝜕𝑦2
{
𝜕𝐿

𝜕𝜓𝑧𝑧
} = −

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
+ (−

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
) = −2

𝜂𝑟
2

2

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
. 
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As a result of the substitution of expressions (35i) into the Euler-Poisson-Elsgolts equation (35h), 

we obtain the following three-dimensional stochastic equation 

−
3𝜂𝑟

2

2
{
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
} + 2[< 𝑢(𝑥, 𝑦, 𝑧) > − < 𝜀(𝑥, 𝑦, 𝑧) >]𝜓(𝑥, 𝑦, 𝑧) = 0. (36) 

 

Let’s multiply both sides of this by –1 and write it in a compact form 

 

3𝜂𝑟
2

4
∇2𝜓(𝑟) + [< 𝜀(𝑟) > − < 𝑢(𝑟) >]𝜓(𝑟) = 0, (37) 

where 𝜓(𝑟) = 𝜓(𝑥, 𝑦, 𝑧) is the extremal of the Functional of the 3-dimensional globally averaged 

efficiency of the ChWP (32). 

𝑟 is the radius vector, with the beginning at the conditional center of the investigated stochastic 

system (see Figure 1) and the end at the point with coordinates 𝑥, 𝑦, 𝑧; the modulus of this vector is 

|𝑟| = (𝑥2 + 𝑦2 + 𝑧2)1/2. (38) 

Eq. (37) will be called “the mass-independent stationary three-dimensional stochastic Euler-

Poisson equation” (or abbreviated as “the stationary stochastic Euler-Poisson equation”). 

2.5 Stationary Stochastic Schrödinger-Euler-Poisson Equation 

Consider the case when the locally averaged mechanical energiality of the ChWP < 𝜀(𝑟) > is 

constant at all points of the investigated stochastic system 

< 𝜀(𝑟) > = 𝜀 = 𝑐𝑜𝑛𝑠𝑡а𝑛𝑡. (39) 

In such a stationary stochastic system, the locally averaged kinetic energiality of the ChWP <

𝑘(𝑥, 𝑦, 𝑧, 𝑡) > and its locally averaged potential energiality < 𝑢(𝑥, 𝑦, 𝑧, 𝑡) > so, on average, they 

pass into each other that their averaged sum at each point 𝑟 ≔ (𝑥, 𝑦, 𝑧) always remains constant 

< 𝑘(𝑟) > + < 𝑢(𝑟) >= 𝜀 = 𝑐𝑜𝑛𝑠𝑡а𝑛𝑡. (40) 

In this case, Eq. (37) takes the form 

−
3𝜂𝑟

2

4
∇2𝜓(𝑟) + < 𝑢(𝑟) > 𝜓(𝑟) = 𝜀𝜓(𝑟). (41) 

We compare stochastic Eq. (41) with the time-independent Schrödinger equation 

−
ℏ2

2𝑚
∇2𝜓(𝑟) + 𝑈(𝑟)𝜓(𝑟) = 𝐸𝜓(𝑟), (42) 

where ℏ is the reduced Planck's constant (ℏ = 1.055 × 10−34 J/Hz). 

First, we divide both sides of Schrödinger equation (42) by the particle mass 𝑚 

ℏ2

2𝑚2
∇2𝜓(𝑟) +

𝑈(𝑟)

𝑚
𝜓(𝑟) =

𝐸

𝑚
𝜓(𝑟). (43) 
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We write Eq. (43) in the following form 

−
1

2
(
ℏ

𝑚
)
2

∇2𝜓(𝑟)+𝑢(𝑟)𝜓(𝑟) = 𝜀𝜓(𝑟), (44) 

where, according to the terminology introduced above (14)–(16): 

𝜀 = 𝐸 𝑚⁄  is the “mechanical energiality” of the particle; (45) 

𝑢(r⃗) = 𝑈(r⃗)/𝑚 is the “potential energiality” of the particle. (46) 

Comparing Eqs. (41) and (44), we find that for 

ℏ

𝑚
= √

3

2
𝜂𝑟 = √

3

2

2𝜎𝑟
2

𝜏𝑟𝑐𝑜𝑟
 and 𝑢(𝑟) = < 𝑢(𝑟) > (47) 

these equations coincide entirely.  

The ratio of the volume of the cylinder to the volume of the ball inscribed in it (see Figure 2) is 

equal to 3/2. Archimedes was so shocked by this fact that he requested his relatives to engrave 

a sphere inscribed in a cylinder on his tombstone. It is believed that Cicero found Archimedes' 

grave thanks to this symbol (note by S. Petukhov). 

 

Figure 2 Sphere inscribed in a cylinder. 

Thus, it turned out that the time-independent Schrödinger equation (42) is a particular case of 

the stochastic equation (41). 

Therefore, Eq. (41) will be called “the mass-independent stationary three-dimensional stochastic 

Schrödinger-Euler-Poisson equation” (or abbreviated, “stationary stochastic Schrödinger-Euler-

Poisson equation”). 

Due to the smallness of the reduced Planck constant ℏ, the requirement 𝜂𝑟 = ℏ 𝑚⁄  refers to 

stochastic systems at the microscopic level or extremely precise macro-level systems, such as the 

LIGO project. 

At the same time, in all the previous reasoning, no restrictions were imposed on the scale 

parameter 𝜂𝑟 = 2𝜎𝑟
2/𝜏𝑟𝑐𝑜𝑟  

(see Appendix 1 and Appendix 2). This parameter depends on the 

standard deviation 𝜎𝑟 and the autocorrelation coefficient 𝜏𝑟𝑐𝑜𝑟 of a random process, in which ChWP 

of any scale is involved. Therefore, stationary stochastic Eq.s (37) and (41) are suitable for describing 

the averaged states of stationary stochastic systems regardless of their size and quality. 

Therefore, the stationary (i.e., time-independent) stochastic Eq.s (37) and (41) are suitable for 

describing the averaged states of stationary stochastic systems, regardless of their size and type of 
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association with their environment. In other words, stochastic Eq.s (37) and (41) are applicable to 

describe the averaged states of compact objects or subjects wandering chaotically in 3-dimensional 

space (actual or phase) in physics, biology, sociology, psychology, economics, etc.  

Section 3.6 in [21](arXiv:1702.01880) gives an example of using the stationary stochastic Eq. (41) 

to describe a discrete (quantum) set of averaged states of a chaotically oscillating nucleus of a 

biological cell.  

Eq. (41) is similarly applicable to describe stationary quantum states of many other macroscopic 

stochastic systems, such as, for example, a chaotically shifting geometric center of the planet's core 

and many other aforementioned randomly moving centers of various objects. 

In contrast to Eq. (42), which was hypothesized by Erwin Schrödinger in 1926, stochastic Eq.s (37) 

and (41) are obtained based on the variational principle. That is, stochastic Eq.s (37) and (41) are 

the conditions for searching for extremals of the globally averaged “efficiency” functional of ChWP 

(32), which is symmetric concerning the simultaneous tendency of any stochastic system to “order” 

and “chaos”. This is the additional significance of the result obtained. 

Let’s consider, for example, the possibility of using the obtained formulas to study white noise. 

White noise is a mathematical abstraction. That is, this is an ideal stationary random process with 

an infinite spectrum 

𝑆(𝜔) = 𝜎𝜔
2 , 

where 𝜎𝜔
2  is white noise dispersion, and correlation function 

𝑅𝑎𝑐𝑜𝑟(𝜏) = 𝜎𝜔
2𝛿(𝜏), 

where 𝜏 = 𝑡2 − 𝑡1, 𝛿(𝜏) is delta function. 

This means that the autocorrelation coefficient of white noise tends to be zero. 

𝜏𝜔𝑎𝑐𝑜𝑟 → 0. 

Therefore, white noise cannot be studied within the scope of this article. However, if we assume 

that the stationary random process differs negligibly from white noise, i.e., if its autocorrelation 

coefficient 𝜏𝑎𝑐𝑜𝑟 is negligible but not equal to zero 

0 ≅ 𝜏𝑠𝑎𝑐𝑜𝑟 ≠ 0. 

Then, such a slightly “darkened” random process can be described by the stochastic equation (41) 

with 𝜀 = 𝜎𝜔
2/𝜏𝑠𝑎𝑐𝑜𝑟

2  and < 𝑢(𝑟) >= 0 

3𝜂𝑟
2

4
∇2𝜓(𝑟) +

𝜎𝜔
2

𝜏𝑠𝑎𝑐𝑜𝑟2
𝜓(𝑟) = 0, (47a) 

where according to expression (47) 𝜂𝑟 =
2𝜎𝜔

2

𝜏𝑠𝑎𝑐𝑜𝑟
= √

2

3

ℏ

𝑚
. 

This equation can be represented as follows 

∇2𝜓(𝑟) +
1

3𝜎𝜔2
𝜓(𝑟) = 0. (47b) 
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Let’s consider one section of the 3-dimensional random process under study; as a result, we 

obtain a one-dimensional stationary random process. For the one-dimensional case, Eq. (47b) takes 

the form 

∇2𝜓(𝑥) +
1

𝜎𝜔2
𝜓(𝑥) = 0. (47c) 

This is a particular case of the well-known quantum harmonic oscillator equation. The solution 

to this equation is known 

𝜓(𝑥) =
1

√𝜎𝜔2√𝜋

𝑒𝑥𝑝 (−
𝑥2

2𝜎𝜔2
). 

Thus, it turned out that in any section, the “darkened” white noise under study is a Gaussian 

stationary random process with a distribution density 

𝜌(𝑥) = 𝜓(𝑥)𝜓(𝑥) =
1

√𝜋𝜎𝜔2
𝑒𝑥𝑝 (

𝑥2

𝜎𝜔2
) . (47𝑑) 

This result confirms that the resulting stochastic equation is suitable for studying various 

stationary random processes. 

2.6 Time-Dependent Stochastic Euler-Poisson Equation 

Let the averaged characteristics of the random trajectory of the ChWP movement change with 

time, but so slowly that in each small time interval 𝛥𝑡, all these characteristics can be considered 

unchanged. Such an unstable behavior of a particle is considered in Appendix 1 and is called a 

pseudo-stationary random process (PSRP). 

Let’s also assume that for such a pseudo-stationary stochastic system (i.e., the non-equilibrium 

state of the ChWP), its globally averaged mechanical energiality (GAME) changes insignificantly over 

time 

< 𝜀(𝑥, 𝑦, 𝑧, 𝑡) >=< 𝑘(𝑥, 𝑦, 𝑧, 𝑡) >+< 𝑢(𝑥, 𝑦, 𝑧, 𝑡) >. (48) 

Since the change in GAME is slow, we can write 

< 𝜀(𝑥, 𝑦, 𝑧, 𝑡) >=< 𝜀(𝑥, 𝑦, 𝑧, 𝑡0) >±< 𝜀𝑘(𝑥, 𝑦, 𝑧, 𝑡) >, (49) 

where < 𝜀(𝑥, 𝑦, 𝑧, 𝑡0) > is the initial value of the globally averaged mechanical energiality of the 

ChWP at the time 𝑡0; ±< 𝜀𝑘(𝑥, 𝑦, 𝑧, 𝑡) > is a slight change {increase (+) or decrease (– )} of the 

globally averaged mechanical energiality of the ChWP for a time interval 𝑡, associated with a change 

in its kinetic energiality Δ𝑘. 

To reduce the calculations, consider the one-dimensional case without loss of generality of 

conclusions for the case of 3-dimensions, and represent Ex. (49) in an abbreviated form 

< 𝜀(𝑥, 𝑡) >=< 𝜀(𝑥, 𝑡0) >±< 𝜀𝑘(𝑥, 𝑡) >. (50) 
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Let’s write Ex. (50) as follows 

< 𝜀(𝑥, 𝑡) >= ∫ 𝜌(𝑥, 𝑡) < 𝜀(𝑥, 𝑡0) > 𝑑𝑥 ± ∫ 𝜌(𝜀𝑘𝑥, 𝑡)𝜀𝑘𝑥𝑑𝜀𝑘𝑥

∞

−∞

∞

−∞

, (51) 

where 𝜀𝑘𝑥 is a local change in the mechanical energiality of the ChWP due to a slight change in its 

kinetic energiality in the direction of the 𝑋 -axis (see § A2.2 in Appendix 2); 𝜌(𝜀𝑘𝑥, 𝑡)  is the 

probability distribution function (PDF) of changes in the mechanical energiality of the ChWP 𝜀𝑘𝑥. 

Let’s substitute Ex. (51) into the globally averaged x-efficiency of the ChWP (18)  

< 𝑠𝑥(∆𝑡) >= ∫ {
1

2
∫ 𝜌(𝑣𝑥 , 𝑡)𝑣𝑥

2𝑑𝑣𝑥 +∫ 𝜌(𝑥, 𝑡)[< 𝑢(𝑥, 𝑡) > −< 𝜀(𝑥, 𝑡0) >]𝑑𝑥 ± ∫ 𝜌(𝜀𝑘𝑥 , 𝑡)𝜀𝑘𝑥𝑑𝜀𝑘𝑥

∞

−∞

∞

−∞

∞

−∞

}
𝑡2

𝑡1

𝑑𝑡. (52) 

Let’s write Ex. (52) in the coordinate representation. For this, we express the PDFs 𝜌(𝑥, 𝑡), 

𝜌(𝑣𝑥, 𝑡) and 𝜌(𝜀𝑥, 𝑡) in terms of the probability amplitude 𝜓(𝑥, 𝑡). 

According to Ex. (A1.46) in Appendix 1 

𝜌(𝑥, 𝑡) = 𝜓(𝑥, 𝑡)𝜓(𝑥, 𝑡) = 𝜓2(𝑥, 𝑡), (53) 

According to Ex. (A2.13) in Appendix 2  

1

2
𝑣𝑥2(𝑡) =

1

2
∫ 𝜌(𝑣𝑥, 𝑡)𝑣𝑥

2𝑑𝑣𝑥

∞

−∞

= −
𝜂𝑥
2

2
∫ 𝜓(𝑥, 𝑡)

𝜕2𝜓(х, 𝑡)

𝜕𝑥2
𝑑𝑥

∞

−∞

, (54) 

where {see Ex. (A2.13a)

 

in Appendix 2} 

𝜂𝑥 =
2𝜎𝑥

2(𝑡 − 𝑡0)

𝜏𝑥𝜅𝜊𝑝(𝑡 − 𝑡0)
≈
2𝜎𝑥

2

𝜏𝑥𝜅𝜊𝑝
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

is a constant scale parameter2, with dimensions (m2/s). 

According to Ex. (A2.31) in Appendix 2  

< 𝜀𝑘(𝑥, 𝑡) >= ∫ 𝜌(𝜀𝑘𝑥, 𝑡)𝜀𝑘𝑥𝑑𝜀𝑘𝑥

∞

−∞

= ±𝑖
𝜂𝑥
2

𝐷
∫ 𝜓(𝑥, 𝑡)

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥

+∞

−∞

, (55) 

where 𝐷  is the imaginary part of the complex self-diffusion coefficient 𝐵 = 𝑖𝐷  of a chaotically 

wandering particle (ChWP) with dimension m2/s, {see Ex. (A2.19) in Appendix 2}. It is assumed that 

𝐷 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

As well as 

                                                           

2 The invariability of the scale parameter 𝜂𝑥 =
2𝜎𝑥

2(𝑡)

𝜏𝑥𝑐𝑜𝑟(𝑡)
≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with a change in the wave function 𝜓(𝑥, 𝑡) in this 

case is due to the fact that the variance 𝜎𝑥
2(𝑡) and the autocorrelation interval 𝜏𝑥𝑐𝑜𝑟(𝑡) of the stochastic system under 

study change (i.e., increase or decrease) practically simultaneously and in the same way. 
Keeping unchanged the ratio of the main averaged characteristics of the investigated random process 𝜎𝑥

2(𝑡)/𝜏𝑥𝑐𝑜𝑟(𝑡) 
in Appendix 2 is called: “The law of proportional constancy of the scale parameter 𝜂𝑥 of the stochastic system.” This 
effect is similar to the phenomenon described in the molecular kinetic theory, when the expansion of a gas is invariably 
accompanied by a slowdown in the speed of motion of its atoms and/or molecules and a decrease in the intensity of 
their collisions (i.e., a change in the direction of their motion); and, conversely, gas compression is accompanied by an 
increase in the speed and intensity of collisions of its atoms and/or molecules. 
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∫ 𝜌(𝑥, 𝑡) < 𝑢(𝑥, 𝑡) > 𝑑𝑥
∞

−∞

= ∫ 𝜓2(𝑥, 𝑡) < 𝑢(𝑥, 𝑡) > 𝑑𝑥
∞

−∞

, (56) 

∫ 𝜌(𝑥, 𝑡){< 𝜀(𝑥, 𝑡0) > 𝑑𝑥 =
∞

−∞

∫ 𝜓2(𝑥, 𝑡) < 𝜀(𝑥, 𝑡0) > 𝑑𝑥
∞

−∞

. (57) 

Substituting Ex.s (53)-(57) into integral (52), we obtain the coordinate representation of the 

pseudo-stationary globally averaged 𝑥-efficiency of the ChWP 

< 𝑠𝑥(𝑡) >= ∫ ∫

(

 
−
𝜂𝑥
2

2
𝜓(𝑥, 𝑡)

𝜕2𝜓(х, 𝑡)

𝜕𝑥2
+ 𝜓2(𝑥, 𝑡)[< 𝑢(𝑥, 𝑡) > −< 𝜀(𝑥, 𝑡0) >] ±

±𝑖
𝜂𝑥
2

𝐷
𝜓(𝑥, 𝑡)

∂𝜓(𝑥, 𝑡)

∂t )

 
∞

−∞

𝑡2

𝑡1

𝑑𝑥𝑑𝑡. (58) 

In the case of 3-dimensional consideration, this function has the form

 

< 𝑠𝑟(𝑡) >= ∫ ∫ ∫ ∫

(

 
−
𝜂𝑟
2

2
𝜓(𝑟, 𝑡)∇2𝜓(𝑟) + [< 𝑢(𝑟, 𝑡) > −

−< 𝜀(𝑟, 𝑡0) >]𝜓
2(𝑟, 𝑡) ± 𝑖

𝜂𝑟
2

𝐷
𝜓(𝑟, 𝑡)

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡 )

 
∞

−∞

∞

−∞

∞

−∞

𝑡2

𝑡1

𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡,

where 𝑟 ≔ (𝑥, 𝑦, 𝑧). (59)

 

Let’s find the equation for the extremals 𝜓(𝑥, 𝑦, 𝑧, 𝑡) of Functional (59). 

First, recall that the extremality condition for a functional of the form 

𝐼 = ∫ ∫ ∫ ∫ 𝐿(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑓, 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓00, 𝑓11, 𝑓22, 𝑓33)𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3

∞

−∞

∞

−∞

∞

−∞

𝑥02

𝑥01

where 𝑓𝑖 ∶=
𝜕𝑓

𝜕𝑥𝑖
, 𝑓𝑖𝑖 ∶=

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑖
=
𝜕2𝑓

𝜕𝑥𝑖
2  (𝑖 = 0,1,2,3) (60)

 

is determined by the Euler-Poisson-Elsgolts equation [24](see P.P. 326, The Calculus Of Variations: 

L. Elsgolts) 

𝜕𝐿

𝜕𝑓
−

𝜕

𝜕𝑥0
{
𝜕𝐿

𝜕𝑓0
} −

𝜕

𝜕𝑥1
{
𝜕𝐿

𝜕𝑓1
} −

𝜕

𝜕𝑥2
{
𝜕𝐿

𝜕𝑓2
} −

𝜕

𝜕𝑥3
{
𝜕𝐿

𝜕𝑓3
} +

𝜕2

𝜕𝑥0
2 {

𝜕𝐿

𝜕𝑓00
} +

𝜕2

𝜕𝑥1
2 {

𝜕𝐿

𝜕𝑓11
}

+
𝜕2

𝜕𝑥2
2 {

𝜕𝐿

𝜕𝑓22
} +

𝜕2

𝜕𝑥3
2 {

𝜕𝐿

𝜕𝑓33
} = 0, (61)

 

where  

𝜕

𝜕𝑥𝑖
{
𝜕𝐿

𝜕𝑓𝑖
} =

𝜕

𝜕𝑥𝑖
(
𝜕𝐿

𝜕𝑓𝑖
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓

𝜕𝑥𝑖
+

𝜕

𝜕𝑓0
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓0
𝜕𝑥𝑖

+
𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓1
𝜕𝑥𝑖

+
𝜕

𝜕𝑓2
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓2
𝜕𝑥𝑖

+
𝜕

𝜕𝑓3
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓3
𝜕𝑥𝑖

+
𝜕

𝜕𝑓00
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓00
𝜕𝑥𝑖

+
𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓11
𝜕𝑥𝑖

+
𝜕

𝜕𝑓22
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓22
𝜕𝑥1

+
𝜕

𝜕𝑓33
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓33
𝜕𝑥𝑖

(62)

 

is the first complete partial derivative concerning 𝑥𝑖  (𝑖 = 0,1,2,3); 
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𝜕2

𝜕𝑥𝑖
2 {
𝜕𝐿

𝜕𝑓𝑖𝑖
} =

𝜕2

𝜕𝑥𝑖
2 (
𝜕𝐿

𝜕𝑓𝑖𝑖
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓0
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓0

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓1

𝜕𝑥𝑖
2

+
𝜕

𝜕𝑓2
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓2

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓3
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓3

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓00
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓00

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓11

𝜕𝑥𝑖
2

+
𝜕

𝜕𝑓22
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓22

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓33
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓33

𝜕𝑥𝑖
2

(63)

 

is the second complete partial derivative concerning 𝑥𝑖  (𝑖 = 0,1,2,3);  

In the case of functional (59), we have Lagrangian:  

𝐿 = −
𝜂𝑟
2

2
𝜓(𝑥, 𝑦, 𝑧, 𝑡) ( 

𝜕2𝜓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
+
𝜕2𝜓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2
)

+[< 𝑢(𝑥, 𝑦, 𝑧, 𝑡) > − < 𝜀(𝑥, 𝑦, 𝑧, 𝑡) >]𝜓2(𝑥, 𝑦, 𝑧, 𝑡) ± 𝑖
𝜂𝑟
2

𝐷
𝜓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝜓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
, (64)

 

where in 

𝑥1 = 𝑡, 𝑥1 = 𝑥, 𝑥2 = 𝑦,  𝑥3 = 𝑧;  𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝜓(𝑥, 𝑦, 𝑧, 𝑡), (65) 

𝜓𝑡 ∶=
𝜕𝜓

𝜕𝑡
, 𝜓𝑥 ∶=

𝜕𝜓

𝜕𝑥 
, 𝜓𝑦 ∶=

𝜕𝜓

𝜕𝑦
, 𝜓𝑧 ∶=

𝜕𝜓

𝜕𝑧
, 

𝜓𝑡𝑡 ∶=
𝜕2𝜓

𝜕𝑡2
, 𝜓𝑥𝑥 ∶=

𝜕2𝜓

𝜕𝑥2
, 𝜓𝑦𝑦 ∶=

𝜕2𝜓

𝜕𝑦2
, 𝜓zz:=

𝜕2𝜓

𝜕𝑧2
. 

Since Lagrangian (64) depends only on 𝜓,𝜓𝑡, 𝜓𝑥𝑥, 𝜓𝑦𝑦 and 𝜓𝑧𝑧 ,  the Euler-Poisson-Elsgolts 

equation (61) is simplified 

𝜕𝐿

𝜕𝜓
−
𝜕

𝜕𝑡
{
𝜕𝐿

𝜕𝜓𝑡
} +

𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝜓𝑥𝑥
} +

𝜕2

𝜕𝑦2
{
𝜕𝐿

𝜕𝜓𝑦𝑦
} +

𝜕2

𝜕𝑧2
{
𝜕𝐿

𝜕𝜓𝑧𝑧
} = 0. (66) 

Because all other terms in (61) are equal to zero. 

As a result of substituting the Lagrangian (64) into expressions (62) and (63), taking into account 

the notation (65), we obtain the following terms in equation (66) 

𝜕𝐿

𝜕𝜓
= −

𝜂𝑟
2

2

𝜕2𝜓(𝑟, 𝑡)

𝜕𝑥2
+ 2𝜓(𝑟, 𝑡)[< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡0) >] ± 𝑖

𝜂𝑟
2

𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
, 

𝜕

𝜕𝑡
{
𝜕𝐿

𝜕𝜓𝑡
} = ±𝑖2

𝜂𝑟
2

𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
, 

𝜕2

𝜕𝑥2
{
𝜕𝐿

𝜕𝜓𝑥𝑥
} = −2

𝜂𝑟
2

2

𝜕2𝜓(𝑟, 𝑡)

𝜕𝑥2
, 

𝜕2

𝜕𝑦2
{
𝜕𝐿

𝜕𝜓𝑦𝑦
} = −2

𝜂𝑟
2

2

𝜕2𝜓(𝑟, 𝑡)

𝜕𝑥2
, 

𝜕2

𝜕𝑧2
{
𝜕𝐿

𝜕𝜓𝑧𝑧
} = −2

𝜂𝑟
2

2

𝜕2𝜓(𝑟, 𝑡)

𝜕𝑥2
.
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Substituting these expressions into the Euler-Poisson-Elsgolts (66), we obtain the desired mass-

independent three-dimensional stochastic equation for determining the extremals 𝜓(𝑟, 𝑡) =

𝜓(𝑥, 𝑦, 𝑧, 𝑡) of the functional of the globally averaged ChWP efficiency (59) 

±𝑖
𝜂𝑟
2

𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

3𝜂𝑟
2

2
∇2𝜓(𝑟, 𝑡)+ 2[< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡0) >]𝜓(𝑟, 𝑡). (67) 

Eq. (67) is a system of two equations 

{
 

 −𝑖
𝜂𝑟
2

2𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

3𝜂𝑟
2

4
∇2𝜓(𝑟, 𝑡) + [< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡0) >]𝜓(𝑟, 𝑡), (67𝑎)

𝑖
𝜂𝑟
2

2𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

3𝜂𝑟
2

4
∇2𝜓(𝑟, 𝑡) + [< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡0) >]𝜓(𝑟, 𝑡). (67𝑏)

 

 

This suggests that in a slowly varying (i.e., pseudo-stationary) stochastic system, two processes 

should co-occur, as described by the two Eqs. (67а) and (67b). 

Eq. (67) will be called “the mass-independent pseudo-stationary (i.e., time-dependent) three-

dimensional stochastic Euler-Poisson equation” (or, in short, “the time-dependent stochastic Euler-

Poisson equation”). 

2.7 Time-Dependent Stochastic Schrödinger-Euler-Poisson Equation 

Let’s suppose that at the initial moment of time t0 the globally averaged mechanical energiality 

of the ChWP is zero (i.e., < 𝜀(𝑟, 𝑡0) >= 0), then equation (67) takes the form 

±𝑖
𝜂𝑟
2

2𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

3

4
𝜂𝑟
2∇2𝜓(𝑟, 𝑡)+< 𝑢(𝑟, 𝑡) > 𝜓(𝑟, 𝑡). (68) 

In the case when 𝐷 = 𝜂𝑟  we obtain the self-consistent stochastic Euler-Poisson equation 

±𝑖
𝜂𝑟
2

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

3

4
𝜂𝑟
2∇2𝜓(𝑟, 𝑡)+< 𝑢(𝑟, 𝑡) > 𝜓(𝑟, 𝑡). (68a) 

Let’s compare Eq. (68a) with the time-dependent Schrödinger equation 

𝑖ℏ
𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓(𝑟, 𝑡)+𝑈(𝑟, 𝑡)𝜓(𝑟, 𝑡). (69) 

First, we divide both sides of Eq. (69) by the particle mass 𝑚; as a result, taking into account 

definition (46), we obtain 

𝑖
ℏ

𝑚

𝜕𝜓(𝑟̄, 𝑡)

𝜕𝑡
= −

1

2

ℏ2

𝑚2
∇2𝜓(𝑟̄, 𝑡) + 𝑢(𝑟, 𝑡)𝜓(𝑟, 𝑡), (70) 

where 𝑢(𝑟, 𝑡) = 𝑈(𝑟, 𝑡)/𝑚 is the potential energiality of the ChWP. 

Obviously, for < 𝑢(𝑟) >= 𝑢(𝑟)  and 
ℏ

𝑚
= 𝜂𝑟 =

2𝜎𝑟
2

𝜏𝑟𝑐𝑜𝑟
 self-consistent stochastic Eq. (68a) and 

Schrödinger equation (70) coincide with constant coefficients and the ± sign. 
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It is interesting to note that Erwin Schrödinger wrote Eq. (4'') in “Quantisierung als 

Eigenwertproblem, Vierte Mitteilung”, Annalen der Physik (1926) [25] in the following form 

Δ𝜓 −
8𝜋2

ℎ2
𝑉𝜓 ±

4𝜋𝑖

ℎ

𝜕𝜓

𝜕𝑡
= 0. (71) 

Let’s rearrange the terms in this expression and take into account that ℏ = ℏ/2𝜋, 

±𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

1

2
ℏ2∇2𝜓 + 𝑉𝜓. (72) 

In this case, there is a complete analogy between the original Schrödinger equation (72) and the 

stochastic Eq. (68). 

Therefore, equation (68) will be called: “the mass-independent non-stationary three-

dimensional stochastic Schrödinger-Euler-Poisson equation” (or, in short, the “time-dependent 

stochastic Schrödinger-Euler-Poisson equation”). 

In contrast to the time-dependent Schrödinger equation (69), the non-stationary stochastic 

Schrödinger-Euler-Poisson equation (68) is applicable to the study of time-varying averaged states 

of ChWP of any scale. 

2.8 The Stochastic Equation of Imaginary Self-Diffusion 

If in the stochastic Eq. (68), we equate to zero the locally averaged potential energiality (i.e.,  

< 𝑢(𝑟, 𝑡) >= 0), then it takes the form of the stochastic equation of imaginary self-diffusion (which 

is a particular case of the Fokker-Planck-Kolmogorov equation) 

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= ∓𝑖

3

2
𝐷∇2𝜓(𝑟, 𝑡) (73) 

with a complex self-diffusion coefficient 𝐵 = 𝑖
3

2
𝐷. 

Thus, the proposed stochastic system model presupposes the possibility of studying various 

variants of the ChWP behavior, depending on its averaged characteristics. 

2.9 The Problem of Factor 3 

In the absence of the dependence of the wave function on time, i.e., for 𝜕𝜓(𝑟, 𝑡)/𝜕𝑡 = 0 and  

< 𝜀(𝑟, 𝑡0) >= 𝜀, Eq. (67) becomes the stationary stochastic Schrödinger-Poisson-Euler Eq. (41) 

−
3𝜂𝑟

2

4
∇2𝜓(𝑟) + < 𝑢(𝑟) > 𝜓(𝑟) = 𝜀𝜓(𝑟), (73a) 

which is to be expected. 

However, on the other hand, one would expect that the equation of imaginary self-diffusion (73) 

should have the form 

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= ∓𝑖𝐷∇2𝜓(𝑟, 𝑡), (73b) 
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since the complex self-diffusion coefficient was determined as 𝐵 = 𝑖𝐷 {see Ex. (A2.19) in Appendix 

2}. 

That is, if instead of factor 3 in the numerator of the first term in equation (73a), there were 

factor 2, then Eq. (41) {or (73a)} would have the preferable form 

−
𝜂𝑟
2

2
∇2𝜓(𝑟)+< 𝑢(𝑟) > 𝜓(𝑟) = 𝜀𝜓(𝑟). (73c) 

In this case, Eq. (68) would also be more concise 

±𝑖
𝜂𝑟
2

2𝐷

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= −

𝜂𝑟
2

2
∇2𝜓(𝑟, 𝑡)+< 𝑢(𝑟, 𝑡) > 𝜓(𝑟, 𝑡), (73d) 

and for 𝜕𝜓(𝑟, 𝑡)/𝜕𝑡 = 0 and < 𝑢(𝑟) >= 0, which becomes Eq. (73b). 

The ambiguity of the situation lies in the fact that if the Euler - Lagrange equation  

𝜕𝐿

𝜕𝜓
+
𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝜓𝑥𝑥
) +

𝜕2

𝜕у2
(
𝜕𝐿

𝜕𝜓𝑦𝑦
) +

𝜕2

𝜕𝑧2
(
𝜕𝐿

𝜕𝜓𝑧𝑧
) = 0, (73e) 

were used instead of the Euler - Poisson equation (35h), then it is easy to make sure that the 

substitution into this equation of the Lagrangian (35g) 

𝐿 = −
𝜂𝑟
2

2
𝜓(𝑥, 𝑦, 𝑧)∇2𝜓(𝑥, 𝑦, 𝑧) + 𝜓2(𝑥, 𝑦, 𝑧)[< 𝑢(𝑥, 𝑦, 𝑧) > −< 𝜀(𝑥, 𝑦, 𝑧) >] 

leads to the expected result, i.e., obtaining equation 

−
𝜂𝑟
2

2
∇2𝜓(𝑟)+< 𝑢(𝑟) > 𝜓(𝑟) =< 𝜀(𝑟) > 𝜓(𝑟). (73f) 

It would seem that using the Euler-Lagrange equation (73d) is a correct way because in this 

equation, the factor 3 disappears. 

But if instead of the Euler-Poisson-Elsgolts equation (66), we use the Euler-Lagrange equation  

𝜕𝐿

𝜕𝜓
−
𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝜓𝑡
) +

𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝜓𝑥𝑥
) +

𝜕2

𝜕у2
(
𝜕𝐿

𝜕𝜓𝑦𝑦
) +

𝜕2

𝜕𝑧2
(
𝜕𝐿

𝜕𝜓𝑧𝑧
) = 0, (73g) 

then after substituting into it the Lagrangian (64) 

𝐿 = −
𝜂𝑟
2

2
𝜓(𝑟, 𝑡)∇2𝜓(𝑟, 𝑡) + [< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡) >]𝜓2(𝑟, 𝑡) ± 𝑖

𝜂𝑟
2

𝐷
𝜓(𝑟, 𝑡)

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
 

the following equation is obtained 

−
𝜂𝑟
2

2

𝜕2𝜓(𝑟, 𝑡)

𝜕𝑥2
+ 𝜓(𝑟, 𝑡)[< 𝑢(𝑟, 𝑡) > −< 𝜀(𝑟, 𝑡0) >] = 0, (73h) 

in which the first-time derivative of the wave function (
𝜕𝜓(𝑟,𝑡)

𝜕𝑡
) is absent, and this equation does not 

correspond to the time-dependent Schrödinger equation (70). 
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We do not know which formalism is more correct: Euler-Lagrange or Euler-Poisson. We can only 

state the facts: 

‐ using the Euler-Lagrange formalism, the derivation of the time-independent Schrödinger 

equation is obtained, in which there is no multiplier (factor) 3. However, this formalism does 

not allow the derivation of the time-dependent Schrödinger equation; 

‐ when using the Euler-Poisson formalism, the derivation of the time-independent Schrödinger 

equation and the time-dependent Schrödinger equation is obtained up to coefficients. But in 

this case, there is a factor 3, not the expected factor of 2. 

Let’s formulate the essence of the problem using the example of a 2-dimensional functional of 

general form 

𝐼[𝑓] = ∫ ∫ 𝐿(𝑥0, 𝑥1, 𝑓, 𝑓0, 𝑓1, 𝑓00, 𝑓01, 𝑓11, … , 𝑓11…1)𝑑𝑥1𝑑𝑥2

∞

−∞

∞

−∞

, (73i) 

where 𝑓𝑖 =
𝜕𝑓

𝜕𝑥𝑖
, 𝑓𝑖𝑗 =

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
,  𝑓𝑖𝑖𝑗 =

𝜕3𝑓

𝜕𝑥𝑖𝜕𝑥𝑖𝜕𝑥𝑗
, … (𝑖 = 0,1; 𝑗 = 0,1). 

The extremals of this function can satisfy the Euler-Lagrange equation [22, 23] 

 
𝜕𝐿

𝜕𝑓
−

𝜕

𝜕𝑥0
(
𝜕𝐿

𝜕𝑓0
) −

𝜕

𝜕𝑥1
(
𝜕𝐿

𝜕𝑓1
) +

𝜕2

𝜕𝑥0
2 (

𝜕𝐿

𝜕𝑓00
) +

𝜕2

𝜕𝑥0𝜕𝑥1
(
𝜕𝐿

𝜕𝑓01
) +

𝜕2

𝜕𝑥1
2 (

𝜕𝐿

𝜕𝑓11
) − ⋯+

+(−1)𝑛
𝜕𝑛

𝜕𝑥1
𝑛 (

𝜕𝐿

𝜕𝑓11…1
) = 0, (73j)

 

or the Euler-Poisson-Elsgolts equation [24] 

𝜕𝐿

𝜕𝑓
−

𝜕

𝜕𝑥0
{
𝜕𝐿

𝜕𝑓0
} −

𝜕

𝜕𝑥1
{
𝜕𝐿

𝜕𝑓1
} +

𝜕2

𝜕𝑥0
2 {
𝜕𝐿

𝜕𝑓00
} +

𝜕2

𝜕𝑥0𝜕𝑥1
{
𝜕𝐿

𝜕𝑓01
} +

𝜕2

𝜕𝑥1
2 {

𝜕𝐿

𝜕𝑓11
} − ⋯+

+(−1)𝑛
𝜕𝑛

𝜕𝑥1
𝑛 {

𝜕𝐿

𝜕𝑓11…1
} = 0, (73k)

 

where  

𝜕

𝜕𝑥𝑖
{
𝜕𝐿

𝜕𝑓𝑖
} =

𝜕

𝜕𝑥𝑖
(
𝜕𝐿

𝜕𝑓𝑖
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓

𝜕𝑥𝑖
+

𝜕

𝜕𝑓0
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓0
𝜕𝑥𝑖

+
𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓1
𝜕𝑥𝑖

+
𝜕

𝜕𝑓00
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓00
𝜕𝑥𝑖

+
𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓11
𝜕𝑥𝑖

+
𝜕

𝜕𝑓10
(
𝜕𝐿

𝜕𝑓𝑖
)
𝜕𝑓10
𝜕𝑥𝑖

+⋯ (73l)

 

is the first complete, partial derivative concerning 𝑥𝑖  (𝑖 = 0,1). 

𝜕2

𝜕𝑥𝑖
2 {
𝜕𝐿

𝜕𝑓𝑖𝑖
} =

𝜕2

𝜕𝑥𝑖
2 (
𝜕𝐿

𝜕𝑓𝑖𝑖
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓0
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓0

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓1

𝜕𝑥𝑖
2

+
𝜕

𝜕𝑓00
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓00

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓11

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑓01
(
𝜕𝐿

𝜕𝑓𝑖𝑖
)
𝜕2𝑓01

𝜕𝑥𝑖
2 +⋯ (73m)

 

is the second complete partial derivative concerning 𝑥𝑖  (𝑖 = 0,1) 
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𝜕

𝜕𝑥𝑖𝜕𝑥𝑗
{
𝜕𝐿

𝜕𝑓𝑖𝑗
} =

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(
𝜕𝐿

𝜕𝑓𝑖𝑗
) +

𝜕

𝜕𝑓
(
𝜕𝐿

𝜕𝑓𝑖𝑗
)
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕

𝜕𝑓0
(
𝜕𝐿

𝜕𝑓𝑖𝑗
)
𝜕2𝑓0
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕

𝜕𝑓1
(
𝜕𝐿

𝜕𝑓𝑖𝑗
)
𝜕2𝑓1
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕

𝜕𝑓00
(
𝜕𝐿

𝜕𝑓𝑖𝑗
)
𝜕2𝑓00
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕

𝜕𝑓11
(
𝜕𝐿

𝜕𝑓𝑖𝑗
)
𝜕2𝑓11
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕

𝜕𝑓10
(
𝜕𝐿

𝜕𝑓𝑖𝑗
)
𝜕2𝑓10
𝜕𝑥𝑖𝜕𝑥𝑗

+⋯ (73n)

 

is second mixed complete partial derivatives concerning 𝑥𝑖&𝑥𝑗  (𝑖 = 0,1; 𝑗 = 0,1).  

For the author, the Euler-Poisson-Elsgolts formalism looks preferable since it leads to the 

derivation of both Schrödinger equations up to constant coefficients. However, the question ( “the 

problem of factor 3”) remains open. 

2.10 The Stochastic Quantum Operators 

Let’s show how operators are obtained in mass-independent stochastic quantum mechanics 

(MSQM). To do this, let us consider the model of a chaotically wandering particle (ChWP) shown in 

Figure 1. 

During the chaotic movement of a particle in the vicinity of the conditional center, it constantly 

changes the direction of its movement. Therefore, a particle at each moment has an angular 

momentum 

𝐿
→
= 𝑟→ × 𝑝→ , (74) 

where 𝑟→ is the radius vector from the conditional center to the particle (Figure 1); 𝑝→ = 𝑚 𝑣→ is the 

instantaneous value and direction of the particle momentum vector. 

Let’s divide both sides of the vector Ex. (74) by the value 𝑚; as a result, we obtain the angular 

velocity vector 

𝜔→ =
𝐿
→

𝑚|𝑟|2
=
𝑟→ × 𝑣→

|𝑟|2
. (75) 

We represent the vector equation (75) in the component form 

𝜔𝑥 =
1

|𝑟|2
(𝑦𝑣𝑧 − 𝑧𝑣𝑦) , 𝜔𝑦 =

1

|𝑟|2
(𝑧𝑣𝑥 − 𝑥𝑣𝑧) ,  𝜔𝑧 =

1

|𝑟|2
(𝑥𝑣𝑦 − 𝑦𝑣𝑥) . (76) 

Let’s average these components 

𝜔𝑥̅̅̅̅ =
1

|𝑟|2
(𝑦𝑣𝑧̅ − 𝑧𝑣𝑦̅̅ ̅) ,  𝜔𝑦 =

1

|𝑟|2
(𝑧𝑣𝑥̅̅ ̅ − 𝑥𝑣𝑧̅) ,  𝜔𝑧 =

1

|𝑟|2
(𝑥𝑣𝑦̅̅ ̅ − 𝑦𝑣𝑥̅̅ ̅) . (77) 

We use the coordinate representation of the averaged components of the velocity vector (A2.2) 

(see Appendix 2) for 𝑛 = 1 

𝑣𝑥 = ∫ 𝜓
+∞

−∞

(𝑥) (±𝑖𝜂𝑥
𝜕

𝜕𝑥
)𝜓(𝑥)𝑑𝑥 = (±

𝑖𝜂𝑥
2

𝜕

𝜕𝑥
)∫ 𝜓

+∞

−∞

(𝑥)𝜓(𝑥)𝑑𝑥, (78) 
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𝑣𝑦 = ∫ 𝜓
+∞

−∞

(𝑦) (±𝑖𝜂𝑦
𝜕

𝜕𝑦
)𝜓(𝑦)𝑑𝑦 = (±

𝑖𝜂𝑥
2

𝜕

𝜕𝑦
)∫ 𝜓

+∞

−∞

(𝑦)𝜓(𝑦)𝑑𝑦, (79) 

𝑣𝑧 = ∫ 𝜓
+∞

−∞

(𝑧) (±𝑖𝜂𝑧
𝜕

𝜕𝑧
)𝜓(𝑧)𝑑𝑧 = (±

𝑖𝜂𝑥
2

𝜕

𝜕𝑧
)∫ 𝜓

+∞

−∞

(𝑧)𝜓(𝑧)𝑑𝑧. (80) 

Let’s prove that these expressions are genuine using the example of Ex. (78). 

First, let’s show that the expression 

𝑣𝑥 = ∫ 𝜓
+∞

−∞

(𝑥) (±𝑖𝜂𝑥
𝜕

𝜕𝑥
)𝜓(𝑥)𝑑𝑥 = ∫ ±

𝑖𝜂𝑥
2

𝜕

𝜕𝑥
[𝜓(𝑥)𝜓(𝑥)]

+∞

−∞

𝑑𝑥, (81) 

is true since equality holds 

−
𝑖𝜂𝑥
2

𝜕

𝜕𝑥
[𝜓(𝑥)𝜓(𝑥] = −

𝑖𝜂𝑥
2
[
𝜕𝜓(𝑥)

𝜕𝑥
𝜓(𝑥) + 𝜓(𝑥)

𝜕𝜓(𝑥)

𝜕𝑥
] = −

𝑖𝜂𝑥
2
[2𝜓(𝑥)

𝜕𝜓(𝑥)

𝜕𝑥
]

= −𝑖𝜂𝑥 [𝜓(𝑥)
𝜕𝜓(𝑥)

𝜕𝑥
] = 𝜓(𝑥) (−𝑖𝜂𝑥

𝜕

𝜕𝑥
)𝜓(𝑥).

 

Since the operations of integration and differentiation are commutative, we finally write 

𝑣𝑥̅̅ ̅ = ∫ 𝜓(𝑥) (−𝑖𝜂𝑥 

𝜕

𝜕𝑥
)𝜓(𝑥)𝑑𝑥

+∞

−∞

= ∫ −
𝑖𝜂𝑥 

2

𝜕

𝜕𝑥
[𝜓(𝑥)𝜓(𝑥]

+∞

−∞

𝑑𝑥 = (−
𝑖𝜂𝑥 

2

𝜕

𝜕𝑥
) ∫ 𝜓(𝑥)𝜓(𝑥)𝑑𝑥

+∞

−∞

, 

this is what it was required to prove (Q.E.D). 

Take into account that, for example, in (78) 

∫ 𝜓(𝑥)𝜓(𝑥)𝑑𝑥 = ∫ 𝜌(𝑥)𝑑𝑥 = 1
∞

−∞

∞

−∞

(82) 

this means that a wandering particle randomly moves in one direction or the other so that the 

average values of the components of its velocity (78)–(80) are equal to zero (i.e., 𝑣𝑥 = 0, 𝑣𝑦 = 0 

and 𝑣𝑧 = 0). 

Therefore, identities (78)-(80) are equivalent to mass-independent stochastic operators of the 

components of the velocity vector 

𝑣
∧

𝑥 = ∓
𝜂𝑟
𝑖

𝜕

𝜕𝑥
, 𝑣

∧

𝑦 = ∓
𝜂𝑟
𝑖

𝜕

𝜕𝑦
, 𝑣

∧

𝑧 = ∓
𝜂𝑟
𝑖

𝜕

𝜕𝑧
, (83) 

here, it is taken into account that for the isotropic case 𝜂𝑥 = 𝜂𝑦 = 𝜂𝑧 = 𝜂𝑟 . 

The mass-independent stochastic operators (83), for 
ℏ

𝑚 
= 𝜂𝑟, correspond to the operators of the 

components of the QM momentum vector [26] 

𝑝
∧

𝑥 =
ℏ

𝑖

𝜕

𝜕𝑥
, 𝑝

∧

𝑦 =
ℏ

𝑖

𝜕

𝜕𝑦
,  𝑝

∧

𝑧 =
ℏ

𝑖

𝜕

𝜕𝑧
 . 
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Substituting expressions (78)-(80) into expressions (77), taking into account (83), we obtain mass-

independent stochastic operators of the components of the ChWP angular velocity vector. 

Substituting (86)-(88) into (85), taking into account (90), we obtain mass-independent stochastic 

operators of the components of the ChWP angular velocity vector 

𝜔
∧

𝑥 = ∓
𝜂𝑟
𝑖|𝑟|2

(𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) ,

𝜔
∧

𝑦 = ∓
𝜂𝑟
𝑖|𝑟|2

(𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) ,

𝜔
∧

𝑧 = ∓
𝜂𝑟
𝑖|𝑟|2

(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) , (84)

 

which correspond to the quantum mechanical operators of the components of the angular 

momentum vector [26] 

𝐿
∧

𝑥 =
ℏ

𝑖
(𝑦

𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
) , 𝐿

∧

𝑦 =
ℏ

𝑖
(𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
) , 𝐿

∧

𝑧 =
ℏ

𝑖
(𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
). 

In a spherical coordinate system, stochastic operators (84) have the form 

𝜔
∧

𝑥 = ∓
𝜂𝑟
𝑖|𝑟|2

(𝑠𝑖𝑛 𝜙
𝜕

𝜕𝜃
− 𝑐𝑡𝑔𝜃 𝑐𝑜𝑠 𝜙

𝜕

𝜕𝜙
) ,

𝜔
∧

𝑦 = ∓
𝜂𝑟
𝑖|𝑟|2

(𝑐𝑜𝑠 𝜙
𝜕

𝜕𝜃
− 𝑐𝑡𝑔𝜃 𝑠𝑖𝑛 𝜙

𝜕

𝜕𝜙
) ,

𝜔
∧

𝑧 = ∓
𝜂𝑟
𝑖|𝑟|2

𝜕

𝜕𝜙
. (85)

 

The stochastic mass-independent operator of the square of the modulus of the angular velocity 

of the ChWP is 

𝜔
∧ 2 = 𝜔

∧

𝑥
2 + 𝜔

∧

𝑦
2 + 𝜔

∧

𝑧
2 = −

𝜂𝑟
2

|𝑟|4
∇𝜃,𝜙
2  , 

where 

∇𝜃,𝜙
2 =

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
) +

1

𝑠𝑖𝑛2 𝜃

𝜕2

𝜕𝜙2
. (86) 

All mass-independent stochastic quantum operators, analogous to the QM operators, can be 

obtained similarly. Only in the MSQM, instead of the ratio ℏ/𝑚, there is a scale parameter 𝜂𝑟 (33) 

{or (A1.45) in Appendix 1}, therefore, the BSCM is suitable for describing stochastic processes of any 

scale. 

Similarly, the mathematical apparatus of the entire mass-independent stochastic quantum 

mechanics (MSQM) can be built, which almost entirely coincides with the mathematical apparatus 

of the QM. However, MSQM is based on the principles of “ordinary” (classical) logic and is suitable 

for describing quantum systems and effects of any scale. 
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2.11 The Uncertainty Principle in MSQM 

The uncertainty in the velocity of a chaotically wandering particle (ChWP) is determined by the 

standard deviation 

√𝑣𝑥2 = √∫ 𝜓
+∞

−∞

(𝑥) (±𝑖𝜂𝑥
𝜕

𝜕𝑥
)
2

𝜓(𝑥)𝑑𝑥 = 𝑖𝜂𝑥√∫ 𝜓
+∞

−∞

(𝑥)
𝜕2𝜓(𝑥)

𝜕𝑥2
𝑑𝑥, (87) 

and the uncertainty in the particle coordinate is determined by the volatility  

√𝑥2 = √∫ 𝜓
+∞

−∞

(𝑥)𝑥2𝜓(𝑥)𝑑𝑥. (88) 

The joint uncertainty in coordinate and momentum can be represented as 

√𝑣𝑥2𝑥2 = √∫ 𝜓
+∞

−∞

(𝑥) (±𝑖𝜂𝑥
𝜕

𝜕𝑥
)
2

𝑥2𝜓(𝑥)𝑑𝑥 = √−𝜂𝑥2∫ 𝜓
+∞

−∞

(𝑥)
𝜕2𝑥2

𝜕𝑥2
𝜓(𝑥)𝑑𝑥 = √2𝑖𝜂𝑥 (89) 

This uncertainty principle of the MSQM is equivalent to the Heisenberg's uncertainty principle 

Δ𝑥Δ𝑝𝑥 ≥ 2𝜋ℏ. 

3. Conclusions 

The article proposes to bring attention to the fact that all the objects and subjects around us 

simultaneously strive for two goals equal in importance but mutually opposite (i. e., antisymmetric): 

‐ to the maximum possible order, which is expressed in the “principle of least action”,  

‐ to the maximum possible chaos, which is expressed in the “principle of maximum entropy”. 

In other words, there is no completely deterministic or random entity in the reality around us. 

Everything is subject to the simultaneous striving for change and orderliness. 

To simultaneously take into account both of these tendencies, this work proposes a unified 

“principle of the average efficiency extremum”, in which both competing concepts, “order” and 

“chaos”, coexist. 

The article considers the averaged states of a particle (i.e., a compact solid body) of any size, 

which, under the influence of fluctuations in the environment and/or various long-range forces, 

continuously wanders (oscillates, displaces) in 3-dimensional space like a Brownian particle. 

A constantly trembling (shifting, oscillating) body is represented as a chaotically wandering 

particle (ChWP) with a continuous trajectory of motion and volume. At the same time, the internal 

structure of the ChWP is not considered, and rotation and deformations of its shape are not taken 

into account. 

These ChWP include the centers of a valence electron in a hydrogen-like atom, a vibrating atom 

in the crystal lattice, the trembling yolk in a chicken egg, a floating moth in the vicinity of a burning 

lamp, etc. (see the beginning of § 2.1). 

All these stochastic systems are similar and obey the same laws, taking into account different 

types of friction coefficients and viscosity of the medium surrounding the ChWP, as well as the 
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duration of the average period of its behavior. For example, to average the chaotic flights of a bird 

in a cage, a week of constant observation is required; averaging the chaotic displacements of the 

galactic nucleus relative to the main line of its motion in outer space will require millions of years of 

research. However, the results of such observations may be similar despite the significant difference 

in the scale of these events. 

For example, in §3.6 [21](arXiv:1702.01880), it is predicted theoretically that the possible 

averaged states of the vibrating nucleus of a biological cell are similar to discrete states of a  

3-dimensional quantum mechanical oscillator (i.e., an elementary particle under identical 

conditions). If these microscopic quantum effects are confirmed experimentally, we can outline 

ways to solve the measurement problem in stochastic quantum mechanics. 

Within the mass-independent stochastic quantum mechanics (МSQM) framework, the problem 

of studying “pure” states of pico-particles is proposed to be solved as follows. It is necessary to find 

(or simulate) a stochastic macroscopic system similar to the investigated pico-scopic system (i.e., a 

chaotically wandering pico-particle) and carry out experiments with the macroscopic system 

without exerting a tangible effect on it. Then, the results of measurements at the macro level are 

projected onto possible similar manifestations of the picoscopic system.  

Within the МSQM, such an approach to the study of “pure” states of picoscopic and megascopic 

systems is possible since the philosophical foundations of this stochastic mechanics are rooted in 

antiquity and are based on the belief that all levels of the Universe are similar to each other. In this 

sense, МSQM is a universal theory for all levels of organization of chaotically oscillating (shifting, 

trembling, wandering, moving) matter. 

As applied to pico-particles (i.e., particles of atomic and subatomic scale), the МSQM 

corresponds to the stochastic quantum mechanics (SQM) of Edward Nelson [1]. In this case, the 

МSQM Eq.s (41) and (68), derived in this article based on the “principle of averaged efficiency 

extremum” of the ChWP, coincided with the corresponding Schrödinger Eq.s (42) and (69) up to 

coefficients. 

In other words, in the mass-independent stochastic quantum mechanics (МSQM), the “pure” 

wave function 𝜓(𝑥, 𝑡) is the extremal of the functional of the averaged “efficiency” of the ChWP, 

written in the coordinate representation. 

Thus, the stochastic equations (37), (41), (67), (68), and (73) obtained in the article are the 

conditions for finding the extremals 𝜓(𝑥, 𝑡) of the functional of the globally averaged “efficiency” 

of a chaotically wandering particle (ChWP).  

It is important to note that this stochastic function is balanced about the simultaneous striving 

of any stochastic system immediately to two mutually opposite (antisymmetric) goals: 

‐ to “order” (that is, to determinism with the most minor energy losses), and 

‐ to “chaos” (i.e., to the maximum entropy or the most significant uncertainty). 

Stochastic Eq.s (41) and (68) have a number of the following advantages over the corresponding 

Schrödinger equations (42) and (69): 

1. In the reasoning given to derive stochastic Eq.s (41) and (68), no restrictions were imposed on 

a chaotically wandering particle (ChWP), except for the total energiality balances (40) and (48). 

ChWP is an ordinary particle with volume, the trajectory of movement, location, and momentum 

every moment. In other words, the derivation of the stochastic Schrödinger-Euler-Poisson Eq.s (41) 

and (68) was obtained based on “ordinary” (classical) logic using the theory of probability, the 

theory of generalized functions, and the calculus of variations. 
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In 95 years since the appearance of Schrödinger's equations in 1926, many researchers have 

proposed various methods of deriving them, relying on the axioms of many different interpretations 

of quantum mechanics. Still, no universally recognized result has been obtained. 

The scientific community has not succeeded in developing logically consistent justifications for 

the QM axioms. One of the reasons for the general dissatisfaction was the lack of a “beautiful” 

derivation of the Schrödinger equations. 

2. The reduced Planck's constant (ℏ = 1.055 × 10−34 J/Hz) limits the scope of the Schrödinger 

equations (42) and (69), and the entire QM as a whole, to the description of atomic and subatomic 

scale phenomena. 

The fact is that the ratio ℏ/𝑚, which is explicitly or latently present in the Schrödinger equations, 

only then turns out to be physically significant when the particle mass m is minimal (for example, it 

is believed that the electron rest mass 𝑚𝑒 = 9.109 × 10
−31 kg). 

However, the field of application of the stochastic Schrödinger-Euler-Poisson equations (41) and 

(68) is not limited by anything. 

To use Eq.s (41) and (68) to describe the averaged states of any of the above stochastic systems, 

it is necessary to estimate their scale parameter 𝜂𝑟 (33). For this, it is necessary to determine the 

standard deviation 𝜎𝑟  and the autocorrelation interval 𝜏𝑟 𝑐𝑜𝑟  of a three-dimensional random 

process in which the corresponding particle participates based on sufficiently long observations of 

the geometric center of the ChWP. 

As an example, §3.6 [21](arXiv:1702.01880) shows the possibility of using the mass-independent 

stationary stochastic Schrödinger-Euler-Poisson equation (41) to obtain quantum numbers 

characterizing the possible averaged states of a chaotically oscillating nucleus of a biological cell 

during the interphase period. 

3. The stochastic equation (41) is also applicable to describe the averaged states of a chaotically 

moving geometric center of an electron in the vicinity of the nucleus of a hydrogen-like atom. If, as 

a result of statistical processing of indirect observations of the chaotic behavior of a valence electron 

in such an atom, it turns out that its scale parameter is 

𝜂𝑒𝑟 =
2𝜎𝑒𝑟

2

𝜏𝑒𝑟𝑐𝑜𝑟
≈
ℏ

𝑚𝑒
=
1,055 × 10−34

9,1 × 10−31
≈ 0,116 × 10−3

𝑚2

𝑠
, 

then Eq.s (41) and (42) for this case will be almost entirely equivalent. In this sense, the time-

independent Schrödinger equation (42) can be regarded as a particular case of the stationary 

stochastic Schrödinger-Euler-Poisson equation (41). 

4. In Schrödinger's equations (42) and (68), the mass of an elementary particle is present. 

However, this mass cannot be directly measured by macroscopic measuring instruments. 

On the other hand, in the stochastic Schrödinger-Euler-Poisson equations (41) and (71), there is 

no particle mass. In this case, the standard deviation 𝜎𝑟 and the autocorrelation interval 𝜏𝑟 𝑐𝑜𝑟 of a 

three-dimensional random process, in which the ChWP is involved, can always be estimated based 

on the statistical processing of the results of sufficiently long observations of practically any 

stochastic system. Therefore, the stochastic Eq.s (37), (41), (67), (68), and (73) obtained in this 

article are universal. 

5. It has been introduced into the minds of several generations of physicists that an electron is a 

point-particle (that is, an entity that has no volume). This happened mainly because a point charge, 
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according to Coulomb's law, must explode due to the infinite repulsive force of different parts of a 

tiny charged particle. 

There were also other arguments, such as L.D. Landau believed that if the electron were not a 

point particle, then in solid collisions with other particles, such stresses would arise that it would 

inevitably disintegrate into parts, but this does not happen in practice. 

At the same time, the idea that elementary particles are point particles leads to many problems 

(in particular, ultraviolet divergences). In addition, the ordinary mind will never agree with the lack 

of volume in an actual particle. 

Therefore, attempts were always made to escape the point-like nature of elementary particles. 

For example, renormalization and regulation (in particular, vacuum polarization around a point 

charge and charge diffusion due to fluctuations) form the illusion of particle volume, and many 

string theorists have moved from point to linear objects in a multidimensional space with 6 

compactly folded dimensions. 

Another thing is that quantum mechanics (QM) was initially formulated in such a way that it 

operates with wave functions and not with particles. Therefore, for the QM methodology, whether 

an elementary particle is a point object or not does not matter. However, in several excrements at 

the time of registration, elementary particles manifest themselves as clearly local formations, rather 

than wave functions, diffuse throughout the Universe. The followers of Niels Bohr bypassed this 

problem with the help of the so-called instant “state reduction”. Many experts do not like that this 

process must proceed at an infinite speed. Hence, the adherents of the many-worlds interpretation 

of Hugh Everett found it more acceptable to assume that it is not the wave function of a particle 

dispersed throughout the world that instantly collapses into a point. Still, the whole world instantly 

goes into one of the many possible states corresponding to the result of the experiment. 

At the same time, according to many scientists (also modern), the concept of puffiness of 

elementary particles should be replaced by the idea of their “geometric center”. Although the 

“geometric center” of any object is a mental construction, it does not contradict common sense, 

and the study of the dynamics of the “geometric center” of a complex object sometimes simplifies 

poorly formalized tasks. 

In the proposed article, the geometric center of the ChWP moves along a chaotic trajectory even 

though the shape of the ChWP can change, oscillate, and rotate. 

6. Suppose we assume that the velocity and coordinate of a chaotically wandering particle 

(ChWP) are entirely independent (i.e., uncorrelated) quantities. In that case, a Brownian (and not 

quantum) particle is obtained and described by the diffusion equation (a particular case of the 

Fokker-Planck-Kolmagorov equation). For such a particle, the dispersion of its location increases 

with time. This is a model of the Markov process. 

However, suppose a colloidal particle turns out to be in a small closed space or in the field of 

action of a potential force. In that case, the Markov character of the process is violated, and in many 

cases, the averaged behavior of the ChWP becomes quantum (i.e., its averaged states are 

quantized). 

The theory of dynamic chaos deals with such processes, where, on the one hand, completely 

deterministic systems of differential equations with specific external and internal parameters can 

lead to pseudo-chaotic trajectories diverging in the Lyapunov fashion. On the other hand, in 

dynamic chaos, order periodically manifests itself, i.e., discrete ordered and/or periodic 

configurations (patterns). 
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“True” quantum indeterminism, according to the author, is because the dominance of two 

essential factors determines the average state of a dynamical system: the “principle of least action” 

and “the principle of maximum entropy”, i.e., the parity between the «order» and «chaos». 

Although the entropy of a distributed system is not mentioned in this article, it is still frequently 

present. Schrödinger-Euler-Poisson equations obtained in this article based on the principle of 

“principle of averaged efficiency extremum” lead to solutions (i.e., to the squares of the modulus of 

wave functions), which are simultaneously extremals of both the functional of the globally averaged 

efficiency and the Shannon entropy functional. 

At the beginning of the method for studying a stochastic distributed system proposed in this 

article, we abstracted from chaos through averaging. However, the averaged order corresponded 

to the maximum entropy (uncertainty), which guarantees stable equilibrium of the considered 

distributed system. 

7. МSQM predicts that many stationary random processes (in which ChWP are involved) can 

transition from one stationary state to another by absorbing or releasing a specific part of the total 

mechanical energiality. 

For example, this is easy to check when a moth constantly chaotically flies around a luminous 

lamp. You can record his chaotic movements with a video camera for a long time. If you then scroll 

through the video recording at high speed, then the moth will not be visible on the screen, but there 

will be a stable, blurry, dark spot, which reflects the PDF of the location of its geometric center.It 

should be expected that if the moth is not disturbed by anything, then the blurred spot will resemble 

a Gaussian PDF with the most significant darkening in the area of the center of the light bulb. 

However, if the moth is somehow energetically influenced, for example, by heat or ultrasound with 

a particular frequency, then its average behavior can abruptly change. In this case, the blurred spot 

can change the configuration to the average shape of a ring or figure-eight, etc. 

Also, the geometric center of a flower, depending on the intensity of gusts of wind, can, on 

average, describe a straight segment, a circle, an ellipse, a figure-eight, or another Lissajous figure. 

Similar 2-D and 3-D quantum effects appear in all ChWP of any scale. This contains the main idea 

of mass-independent stochastic quantum mechanics (MSQM): “Studying stochastic objects of the 

macrocosm using conventional (benchtop) methods, we simultaneously obtain information about 

all similar objects of the microcosm and objects of cosmic scale. 

The approach proposed in this paper makes it possible to derive the equations of nonrelativistic 

mass-independent stochastic quantum mechanics (MSQM) (37), (41), (67), (68) and (73) based on 

principles fundamentally different from the ideological foundations of modern QM interpretations: 

Copenhagen, Many-worlds, Consistent histories, Decoherence, etc., but the mathematical 

apparatus of the MSQM turns out to be completely analogous to the mathematical apparatus of 

the QM. 

Apparently, many other quantum field theory equations can be obtained similarly, such as the 

Klein-Fock-Gordon equation, the Dirac equation, the Maxwell equation, etc. The algorithm for 

deriving them may be similar to the approach given in this work: 

1) the average energy balance condition of the stochastic system is recorded; 

2) mass is extracted from the average energy balance condition, and the “efficiency” of this 

system is obtained; 

3) to execute globally average the “efficiency” of the stochastic system under consideration; 
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4) all the averaged terms in the integrand of the globally averaged “efficiency” are represented 

through the PDF 𝜌(𝑥) and PDF 𝜌(𝑝𝑥); 

5) all the terms of the Lagrangian of the globally averaged “efficiency” of the system are 

converted into a coordinate representation; 

6) the equation for the extremals of the resulting function is determined through the calculus of 

variations (i.e., using the Euler - Poisson equation). 

Further research may confirm this approach's validity in deriving the field theory equations. 

We hope that this work will assist in discovering and studying quantum phenomena not only of 

the microcosm but also of the macro- and Worlds. 

Appendix 

Appendix 1 

A1. Determination of the PDF of the Derivative of a Stationary and Pseudo-Stationary 

Differentiated Random Process 

Consider several realizations of the random process 𝜉(𝑡) (see Figure A1.1). 

 

Figure A1.1 The realizations of a differentiable stationary or pseudo-stationary random 

process 𝜉(𝑡). These realizations can be interpreted, for example, as time changes in the 

projection of the location of a wandering particle on the 𝑋  axis (see Figure 1), i.e., 

𝑥(𝑡) = 𝜉(𝑡). 

In General, this process is non-stationary, but we assume that all the averaged characteristics of 

this process in the section 𝑡𝑖 do not significantly differ from its similar averaged characteristics in 

the section 𝑡𝑗. That is, we require that all the moments and central moments of this process in the 



Recent Progress in Materials 2024; 6(2), doi:10.21926/rpm.2402014 
 

Page 35/51 

section 𝑡𝑖  are approximately equal to the corresponding moments and central moments in the 

section 𝑡𝑗 when 𝜏 = 𝑡𝑗 − 𝑡𝑖 tending to zero. For example, 

𝜉(𝑡𝑖)̅̅ ̅̅ ̅̅ ≈ 𝜉(𝑡𝑗)
̅̅ ̅̅ ̅̅  ; (A1.1) 

𝜉2(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝜉2(𝑡𝑗)
̅̅ ̅̅ ̅̅ ̅̅ , 𝑒𝑡𝑐. (A1.2) 

In other words, the considered random process 𝜉(𝑡) is either stationary or close to it. However, 

in each section 𝑡𝑚, all the averaged characteristics of such a process remain unchanged. We will call 

such a process a “pseudo-stationary random process” (PSRP) for convenience. 

All conclusions about the PSRP made in this appendix also apply to the stationary random process 

(SRP). 

There is a known procedure for obtaining the PDF 𝜌(𝜉𝑘
′ ) of the derivative of a random process 

𝜉′(𝑡) = 𝑑𝜉(𝑡)/𝑑𝑡 with a known two-dimensional PDF of a random stationary process [27, 28] 

𝜌(𝜉𝑖 , 𝜉𝑗) = 𝜌(𝜉𝑖 , 𝑡𝑖; 𝜉𝑗 , 𝑡𝑗). (A1.3) 

In Ex. (A1.3), we make the change of variables 

𝜉𝑖 = 𝜉𝑘 −
𝜏

2
𝜉𝑘
′ ;   𝜉𝑗 = 𝜉𝑘 +

𝜏

2
𝜉𝑘
′ ;   𝑡𝑖 = 𝑡𝑘 −

𝜏

2
;   𝑡𝑗 = 𝑡𝑘 +

𝜏

2
, (A1.4) 

where 

𝜏 = 𝑡𝑗 − 𝑡𝑖; 𝑡𝑘 =
𝑡𝑗 − 𝑡𝑖

2
 , (A1.5) 

with the Jacobian [𝐽] = 𝜏. 

As a result, from the two-dimensional PDF (A1.3), we obtain 

𝜌2(𝜉𝑘, 𝜉𝑘
′ )   =   lim

𝜏→0
𝜏 𝜌2 (𝜉𝑘 −

𝜏

2
𝜉𝑘
′ ,  𝑡𝑘 −

𝜏

2
;   𝜉𝑘 +

𝜏

2
𝜉𝑘
′ ,   𝑡𝑘 +

𝜏

2
) . (A1.6) 

Integrating (A1.6) over 𝜉𝑘, we find the required PDF 𝜌(𝜉𝑘
′ ) in the section  𝑡𝑘 [27]: 

𝜌(𝜉𝑘
′ ) = ∫ 𝜌(𝜉𝑘, 𝜉𝑘

′ )𝑑𝜉𝑘

∞

−∞

. (A1.7) 

Let’s now consider the possibility of obtaining the PDF 𝜌(𝜉𝑘
′ ) for a known one-dimensional PDF 

𝜌(𝜉). 

To solve this problem, we use the following properties of random processes: 

1. A two-dimensional PDF of a random process can be represented as [27, 28] 

𝜌(𝜉𝑖, 𝑡𝑖; 𝜉𝑗 , 𝑡𝑗) = 𝜌(𝜉𝑖, 𝑡𝑖)𝜌(𝜉𝑗, 𝑡𝑗  𝜉𝑖⁄ , 𝑡𝑖), (A1.8) 

where 𝜌(𝜉𝑗, 𝑡𝑗 𝜉𝑖⁄ , 𝑡𝑖) is the conditional PDF. 

2. For any PSRP and SRP, the approximate identity is valid 
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𝜌(𝜉𝑖, 𝑡𝑖) ≈ 𝜌(𝜉𝑗, 𝑡𝑗). (A1.9) 

3. The conditional PDF of a random process at 𝜏 = 𝑡𝑖– 𝑡𝑗  tending to zero becomes the delta 

function 

lim
𝜏→0

𝜌(𝜉𝑗 , 𝑡𝑗  𝜉𝑖⁄ , 𝑡𝑖) = 𝛿(𝜉𝑗 − 𝜉𝑖). (A1.10) 

Using the above properties, we prepare a random process in the interval 

[𝑡𝑖 = 𝑡𝑘 – 𝜏/2;  𝑡𝑗 = 𝑡𝑘 + 𝜏/2]  as  𝜏 → 0, 

based on the following procedure. 

The PDF 𝜌(𝜉𝑖) = 𝜌(𝜉𝑖, 𝑡𝑖) in the section 𝑡𝑖  and the PDF 𝜌(𝜉𝑗) = 𝜌(𝜉𝑗, 𝑡𝑗) in the section 𝑡𝑗  can 

always be represented as a product of two functions 

𝜌(𝜉𝑖) = 𝜑(𝜉𝑖)𝜑(𝜉𝑖) = 𝜑
2(𝜉𝑖), (A1.11) 

  𝜌(𝜉𝑗) = 𝜑(𝜉𝑗)𝜑(𝜉𝑗) = 𝜑
2(𝜉𝑗)  ,  

where 𝜑(𝜉𝑖) is the probability amplitude (PA) of the random variable 𝜉𝑖 in the section 𝑡𝑖; 𝜑(𝜉𝑗) is a 

PA of a random variable 𝜉𝑗  in the section 𝑡𝑗 . 

For PSRP, the approximate expression is valid 

𝜑(𝜉𝑖) ≈ 𝜑(𝜉𝑗), (A1.12) 

which can be verified by taking the square root of both parts (A1.9). 

For SRP, the approximate relation (A1.12) becomes the equality 

𝜑(𝜉𝑖) = 𝜑(𝜉𝑗). (A1.12а) 

Note that the approximate Ex. (A.1.12) at 𝜏 → 0  for the majority of non-stationary random 

processes (including for PSRP) also turns into the equality 

𝜑(𝜉𝑖, 𝑡𝑖) = lim
𝜏→0

𝜑(𝜉𝑗 ,  𝑡𝑗 = 𝑡𝑖 + 𝜏). (A1.13) 

When the condition (A.1.12) [or (A.1.12a)] is satisfied, Ex. (A1.8) can be represented in the 

following form 

𝜌(𝜉𝑖 , 𝜉𝑗) ≈ 𝜑(𝜉𝑖)𝜌(𝜉𝑗 𝜉𝑖⁄ )𝜑(𝜉𝑗), (A1.14) 

where 𝜌(𝜉𝑗 𝜉𝑖⁄ ) is the conditional PDF. 

Let’s write (A.1.14) in expanded form 

𝜌 [𝜉𝑖, 𝑡𝑖 = 𝑡𝑘 −
𝜏

2
; 𝜉𝑗, 𝑡𝑗 = 𝑡𝑘 +

𝜏

2
] ≈

≈ 𝜑 [𝜉𝑖, 𝑡𝑖 = 𝑡𝑘 −
𝜏

2
] 𝜌 [𝜉𝑗, 𝑡𝑗 = 𝑡𝑘 +

𝜏

2
 |  𝜉𝑖, 𝑡𝑖 = 𝑡𝑘 −

𝜏

2
]𝜑 [𝜉𝑗 , 𝑡𝑗 = 𝑡𝑘 +

𝜏

2
]  .

(A1.15) 



Recent Progress in Materials 2024; 6(2), doi:10.21926/rpm.2402014 
 

Page 37/51 

Let τ tend to zero in (A1.15) so that the given time interval contracts uniformly on the left and 

right at the middle moment of time 𝑡𝑘 = (𝑡𝑗 + 𝑡𝑖)/2. In this case, taking into account (A1.10) from 

(A1.14), we obtain the exact equality 

lim
𝜏→0

𝜌(𝜉𝑖 , 𝜉𝑗) = lim
𝜏→0

{ 𝜑(𝜉𝑖)𝜌(𝜉𝑗 𝜉𝑖⁄ )𝜑(𝜉𝑗)} = 𝜑(𝜉𝑖𝑘)𝛿(𝜉𝑗𝑘 − 𝜉𝑖𝑘)𝜑(𝜉𝑗𝑘), (A1.16) 

where 𝜉𝑖𝑘 is the result of the tendency of the random variable 𝜉(𝑡𝑖) to the random variable 𝜉(𝑡𝑘) 

on the left; 𝜉𝑖𝑘 is the result of the tendency of the random variable 𝜉(𝑡𝑗) to the random variable 

𝜉(𝑡𝑘) from the right. 

Integrating both sides of Ex. (A1.16) over 𝜉𝑖𝑘 and 𝜉𝑗𝑘, we obtain 

∫ ∫ 𝜑(𝜉𝑖𝑘)𝛿(𝜉𝑗𝑘 − 𝜉𝑖𝑘)𝜑(𝜉𝑗𝑘)𝑑𝜉𝑖𝑘𝑑𝜉𝑖𝑘 = 1

∞

−∞

∞

−∞

. (A1.17) 

In (A1.17), the properties of the 𝛿-function are considered. 

Let’s set the specific form of the 𝛿-function. To do this, consider a random Markov process for 

which the diffusion equation (a particular case of the Fokker-Planck - Kolmogorov equation) is valid 

𝜕𝜌(𝜉𝑗 𝜉𝑖⁄ )

𝜕𝑡
= 𝐵

𝜕2𝜌(𝜉𝑗 𝜉𝑖⁄ )

𝜕𝜉2
, (A1.18) 

where 𝐵 is the diffusion coefficient. 

One of the solutions of this differential equation, as is well known, has the form 

𝜌(𝜉𝑗, 𝑡𝑗 𝜉𝑖⁄ , 𝑡𝑖) =
1

2𝜋
∫ exp{𝑖𝑞(𝜉𝑗 − 𝜉𝑖) − 𝑞

2𝐵(𝑡𝑗 − 𝑡𝑖)} 𝑑𝑞

∞

−∞

, (A1.19) 

where 𝑞 is the generalized frequency. 

For 𝜏 = 𝑡𝑗 − 𝑡𝑖 → 0 from (A.1.19), we obtain one of the definitions of the 𝛿-function 

lim
𝜏→0

𝜌(𝜉𝑗 𝜉𝑖⁄ ) =
1

2𝜋
∫ exp{𝑖𝑞(𝜉𝑗𝑘 − 𝜉𝑖𝑘)} 𝑑𝑞 = 𝛿(𝜉𝑗 − 𝜉𝑖)

∞

−∞

. (A1.20) 

This result was obtained for the case as 𝜏 → 0. Therefore, the 𝛿-function (A1.20) can correspond 

not only to a Markov random process but also to many other stationary and non-stationary random 

processes. In other words, one could immediately assume that the 𝛿-function for the PSRP has the 

form (A.1.20) without referring to the equation (A.1.18). 

Let’s substitute 𝛿-function (A.1.20) into Ex. (A.1.17) 

∫ ∫𝜑(𝜉𝑖𝑘)  [
1

2𝜋
∫ exp{𝑖𝑞(𝜉𝑗𝑘 − 𝜉𝑖𝑘)} 𝑑𝑞 

∞

−∞

]

∞

−∞

 𝜑(𝜉𝑗𝑘)𝑑𝜉𝑖𝑘  𝑑𝜉𝑗𝑘

∞

−∞

= 1, (A1.21) 
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and change the order of integration in (A1.21) 

∫[
1

√2𝜋
∫ 𝜑(𝜉𝑖𝑘) exp{−𝑖𝑞𝜉𝑖𝑘} 𝑑𝜉𝑖𝑘

1

√2𝜋
∫ 𝜑(𝜉𝑗𝑘) exp{𝑖𝑞𝜉𝑗𝑘) 𝑑𝜉𝑗𝑘

∞

−∞

∞

−∞

]

∞

−∞

𝑑𝑞 = 1. (A1.22) 

Let’s take into account that, according to (A1.13), for the SRP and PSRP, the condition 𝜑(𝜉𝑖𝑘) =

𝜑(𝜉𝑗𝑘) is fulfilled. Therefore, Ex. (A.1.22) can be represented as 

∫ 𝜑(𝑞)𝜑∗(𝑞)𝑑𝑞 = 1

∞

−∞

, (A1.23) 

where 

𝑤(𝑞) =
1

√2𝜋
∫ 𝜑(𝜉𝑘) exp{−𝑖𝑞𝜉𝑘} 𝑑𝜉𝑘

∞

−∞

, (A1.24) 

𝑤∗(𝑞) =
1

√2𝜋
∫ 𝜑(𝜉𝑘) exp{𝑖𝑞𝜉𝑘} 𝑑𝜉𝑘

∞

−∞

. (A1.25) 

The integrand 𝜑(𝑞)𝜑∗(𝑞) in (A1.23) meets all the requirements of the PDF 𝜌(𝑞) of the random 

variable 𝑞: 

𝜌(𝑞) = 𝑤(𝑞)𝑤∗(𝑞) = |𝑤(𝑞)|2. (A1.26) 

Let’s clarify the physical meaning of 𝑞. 

The features of the considered random process impose the following restrictions on the 

generalized frequency 𝑞: 

1) the random variable 𝑞  should characterize the random process 𝜉(𝑡) in the section 𝑡𝑘  (see 

Figure A1.1), i.e., in the interval 𝜏 = 𝑡𝑗– 𝑡𝑖  tending to 0; 

2) the variable q must belong to the set of real numbers; it must take any value from the range 

[–∞,∞]. 

These requirements are satisfied by the following random values associated with the PSRP (or 

SRP) in the time interval 𝜏: 

𝜉𝑖
′ =

𝜕𝜉𝑘
𝜕𝑡

,  𝜉𝑖
″ =

𝜕2𝜉𝑘
𝜕𝑡

, . . . , 𝜉𝑖
(𝑛) =

𝜕𝑛𝜉𝑖
𝜕𝑡𝑛

. (A1.27) 

To clarify which values are associated with the generalized frequency q, consider one 

implementation of the process under study (see Figure A1.1). The function 𝜉(𝑡) in the interval at 

𝜏 < 𝜏𝑐𝑜𝑟 [where 𝜏𝑐𝑜𝑟 is the autocorrelation interval of the random process 𝜉(𝑡)] can be expanded 

in the Maclaurin series 
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𝜉(𝑡𝑗) = 𝜉(𝑡𝑖) + 𝜉
′(𝑡𝑖)𝜏 +

𝜉″(𝑡𝑖)

2
𝜏2 +⋯+

𝜉(𝑛)(𝑡𝑖)

𝑛!
𝜏𝑛 +⋯ (A1.28) 

The Ex. (A1.28) is presented in the following form 

𝜉𝑗 − 𝜉𝑖

𝜏
= 𝜉𝑖

′  +
𝜉𝑖
″

2!
𝜏 + ⋯+

𝜉𝑖
(𝑛)𝜏𝑛−1

𝑛!
+ ⋯ (A1.29) 

where 𝜉(𝑡𝑖) = 𝜉𝑖,  𝜉(𝑡𝑗) = 𝜉𝑗, and we tend 𝜏 to zero. 

In this case, (A1.29) is reduced to the expression 

lim
𝜏→0

𝜉𝑗 − 𝜉𝑖

𝜏
= 𝜉𝑘

′  , (A1.30) 

where 𝜉𝑘 = 𝜉(𝑡𝑘) (see Figure A1.1). 

Therefore, it remains to assume that the generalized frequency 𝑞  in Ex.s (A1.23)-(A1.26) is 

linearly related only to 𝜉𝑘
′ , i.e. 

𝑞 =
𝜉𝑘
′

𝜂
, (A1.31) 

where 𝜂 is the scale parameter. 

The Ex. (A1.31) can be obtained in another way. 

Each exponential, for example, from the integral (A1.24), corresponds to a harmonic function 

with frequency 𝑞 

exp{−𝑖𝑞𝜉(𝑡)} → 𝜉𝑘(𝑡) = Аsin(𝑞𝑡) , (A1.32) 

this is one of the harmonic components of the random process 𝜉(𝑡). 

Each frequency 𝑞, in turn, corresponds to the tangent of the angle of inclination of the tangent 

line to the harmonic function with a given frequency (see Figure A1.2), that is, 𝑞 ⁓ 𝑡𝑔𝛼 = 𝜉 (𝑡). 

 

Figure A1.2 The more significance of the frequency q of the harmonic function, the 

greater the angle α between the tangent to this function and the 𝑡 axis. 
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Differentiating Ex. (A1.32), we obtain 𝜉𝑘
′ (𝑡) = 𝑞𝐴cos(𝑞𝑡), whence it follows 

𝑞 = lim
𝑡→0

𝜉𝑘
′

𝐴cos(𝑞𝑡)
=
𝜉𝑘
′

𝐴
. (A1.33) 

For 𝐴 = 𝜂 Ex.s (A1.31) and (A1.33) coincide. 

Substituting (A1.31) into (A1.23)-(A1.26), we obtain the following required procedure for 

obtaining the PDF 𝜌(𝜉, 𝑡) of a pseudo-stationary random process (PSRP) or stationary random 

process (SRP) 𝜉(𝑡) in any section 𝑡𝑘 for a known one-dimensional PDF 𝜌(𝜉, 𝑡) in the same section: 

1. A given one-dimensional PDF 𝜌(𝜉, 𝑡) is represented as a product of two probability amplitudes 

(PA) 𝜑(𝜉): 

𝜌(𝜉, 𝑡) = 𝜑(𝜉, 𝑡)𝜑(𝜉, 𝑡). (A1.34) 

2. Two Fourier transforms are performed 

𝑤(𝜉′, 𝑡) =
1

√2𝜋𝜂
∫ 𝜑(𝜉, 𝑡) exp{𝑖𝜉′𝜉/𝜂} 𝑑𝜉

∞

−∞

, (A1.35) 

𝑤 ∗ (𝜉′, 𝑡) =
1

√2𝜋𝜂
∫ 𝜑(𝜉, 𝑡) exp{−𝑖𝜉′𝜉/𝜂} 𝑑𝜉

∞

−∞

. (A1.36) 

3. Finally, for any section of the PSRP (or SRP), we obtain the required PDF of its derivative  

𝜌(𝜉′, 𝑡) = 𝑤(𝜉′, 𝑡)𝑤∗(𝜉′, 𝑡) = |𝑤(𝜉′, 𝑡)|2. (A1.37) 

Once again, we note that the procedure (A1.34)–(A1.37) can be applied to any stationary and 

pseudo-stationary random processes {i.e., random processes with a slowly varying PDF 𝜌(𝜉, 𝑡)}, for 

which, as 𝜏 → 0, the 𝛿-function takes the form (A1.20). 

To clarify the physical meaning of the scale parameter 𝜂, consider a stationary random process 

𝜉(𝑡) with a Gaussian distribution of the random variable 𝜉 

𝜌(𝜉) =
1

√2𝜋𝜎𝜉
2

exp {−
(𝜉 − 𝑎𝜉)

2

2𝜎𝜉
2 } , (A1.38) 

where 𝜎𝜉
2 and 𝑎𝜉 are the variance and mathematical expectations of the process. 

Performing the sequence of operations (A1.34)-(A1.37) with the PDF (A1.38), we obtain the PDF 

of the derivative of this random process 

𝜌(𝜉′) =
1

√2𝜋 [
𝜂
2𝜎𝜉

]
2

exp

{
 
 

 
 

−
𝜉′
2

2 [
𝜂
2𝜎𝜉

]
2

}
 
 

 
 

. (A1.39) 
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On the other hand, using the well-known procedure (A1.4)-(A1.7) for a similar case, we obtain 

[29] 

𝜌(𝜉′) =
1

√2𝜋𝜎𝜉′
2

exp {−𝜉′
2
/2𝜎𝜉′

2 } , (A1.40)
 

where 𝜎𝜉′ = 𝑎𝜉/𝜏𝜉 𝑐𝑜𝑟, 

here 𝜏𝜉 𝑐𝑜𝑟 is the autocorrelation interval of the initial random process 𝜉(𝑡). 

Comparing the PDF (A1.39) and (A1.40), we find that 

𝜂 =
2𝜎𝜉

2

𝜏𝜉 𝑐𝑜𝑟
. (A1.41) 

The Ex. (A1.41) was obtained for a Gaussian random process, but the standard deviation σξ and 

the autocorrelation interval τξ cor are the main characteristics of any SRP or PSRP. All other moments 

and central moments in the case of a non-Gaussian distribution of the random variable 𝜉(𝑡) will 

make an insignificant contribution to the Ex. (A1.41). Therefore, it can be argued with a high degree 

of reliability that Ex. (A1.41) applies to a large class of stationary and pseudo-stationary random 

processes. 

In quantum mechanics, for the transition from the coordinate representation of the wave 

function of a pico-particle to its momentum representation, there is the procedure  

𝜑(𝑝𝑥) =
1

√2𝜋ℏ
∫ 𝜓(𝑥)exp{𝑖𝑝𝑥𝑥/ℏ}𝑑𝑥 =

∞

−∞

1

√2𝜋ℏ
∫ 𝜓(𝑥)exp{𝑖𝑚𝑥′𝑥/ℏ}𝑑𝑥

∞

−∞

, (A1.42) 

𝜑 ∗ (𝑝𝑥) =
1

√2𝜋ℏ
∫ 𝜓(𝑥)exp{−𝑖𝑝𝑥𝑥/ℏ}𝑑𝑥 =

1

√2𝜋ℏ
∫ 𝜓(𝑥)exp{−𝑖𝑚𝑥′𝑥/ℏ}𝑑𝑥

∞

−∞

∞

−∞

, (A1.43) 

where ℏ = 1.055 × 10–34 J/Hz is the reduced Planck's constant, and it is also taken into account 

that the 𝑥-component of the particle momentum 𝑝𝑥 is related to its speed 𝑣𝑥 (i.e., time derivative)  

𝑝𝑥 = 𝑚𝑣𝑥 = 𝑚
𝑑𝑥

𝑑𝑡
= 𝑚𝑥′. (A1.44) 

In the case when 

𝜂𝑥 =
2𝜎𝑥

2

𝜏𝑥 𝑐𝑜𝑟
=
ℏ

𝑚
 with dimension (𝑚2/𝑠), (A1.45) 

procedures (A1.34)-(A1.37) and (A1.42)-(A1.43) completely coincide. 

From Ex. (A1.45), it follows that Planck's constant can be expressed through the main averaged 

parameters 𝜎𝑥  and 𝜏𝑥 𝑐𝑜𝑟  of a stationary (or pseudo-stationary) random process involving a 

randomly wandering pico-particle (for example, an electron). 
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At the same time, the field of application of the procedure (A1.42)–(A1.43) is limited by the 

smallness of the reduced Planck’s constant ℏ. The method (A1.34)–(A1.37) can be applied to any 

scale's random and pseudo–stationary processes. Such random processes include chaotic 

oscillations of the center of mass of the nucleus of a biological cell, chaotic movements of the tip of 

a tree branch, chaotic changes in the position of the center of mass of the planet's nucleus, etc. 

Let’s note the following intermediate results: 

1. For a stationary and pseudo-stationary random process 𝜉(𝑡) = 𝑥(𝑡), the following procedure 

for obtaining the PDF 𝜌(𝑥′) derivative of this process can be applied. 

A given one-dimensional PDF 𝜌(𝑥) of a stationary process [or a slowly varying PDF 𝜌(𝑥, 𝑡) of a 

pseudo-stationary process] is represented as a product of two PA 𝜓(𝑥) or 𝜓(𝑥, 𝑡): 

𝜌(𝑥) = 𝜓(𝑥)𝜓(𝑥) or 𝜌(𝑥, 𝑡) = 𝜓(𝑥, 𝑡)𝜓(𝑥, 𝑡). (A1.46) 

a) For a stationary random process (SRP), two Fourier transforms are performed 

𝜑(𝑥′) =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥)exp{𝑖𝑥′𝑥/𝜂𝑥}𝑑𝑥

∞

−∞

  =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥)exp{𝑖𝑣𝑥𝑥/𝜂𝑥}𝑑𝑥

∞

−∞

, (A1.47) 

𝜑 ∗ (𝑥′) =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥)exp{−𝑖𝑥′𝑥/𝜂𝑥}𝑑𝑥 =

∞

−∞

1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥)exp{−𝑖𝑣𝑥𝑥/𝜂𝑥}𝑑𝑥

∞

−∞

, (A1.48) 

and the desired PDF of the derivative of this process is determined 

𝜌(𝑥′) = 𝜑(𝑥′) 𝜑∗(𝑥′) = |𝜑(𝑥′)|2, (A1.49) 

or 

𝜌(𝑣𝑥) = 𝜑(𝑣𝑥)𝜑
∗(𝑣𝑥) = |𝜑(𝑣𝑥)|

2, (A1.50) 

where 

𝜂𝑥 =
2𝜎𝑥

2

𝜏𝑥 𝜅𝜊𝑝
=
ℏ

𝑚
(A1.51) 

𝜎𝑥 is the standard deviation of the initial stationary random process 𝑥(𝑡) ; 𝜏𝑥 𝑐𝑜𝑟  is the 

autocorrelation interval of this process. 

In § 2.6 of the article [30](arXiv:2007.13527), the procedure (A1.46)-(A1.50) is applied to obtain 

the PDF 𝜌(𝑥′) of the derivative of stationary random processes with distribution laws: Gaussian, 

uniform, Laplace, Cauchy and sinusoidal. 

b) For a pseudo-stationary random process (PSRP), two Fourier transforms are performed 

𝜑(𝑥′, 𝑡) =
1

√2𝜋𝜂𝑥(𝑡)
∫ 𝜓(𝑥, 𝑡) exp{𝑖𝑥′𝑥/𝜂𝑥(𝑡)} 𝑑𝑥 =

∞

−∞

1

√2𝜋𝜂𝑥(𝑡)
∫ 𝜓(𝑥, 𝑡) exp{𝑖𝑣𝑥𝑥/𝜂𝑥(𝑡)} 𝑑𝑥,

∞

−∞

(A1.52) 
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𝜑∗(𝑥′, 𝑡) =
1

√2𝜋𝜂𝑥(𝑡)
∫ 𝜓(𝑥, 𝑡) exp{−𝑖𝑥′𝑥/𝜂𝑥(𝑡)} 𝑑𝑥 =

1

√2𝜋𝜂𝑥(𝑡)
∫ 𝜓(𝑥, 𝑡) exp{−𝑖𝑣𝑥𝑥/𝜂𝑥(𝑡)} 𝑑𝑥

∞

−∞

∞

−∞

, (A1.53) 

and the required PDF of the derivative of this process is determined at each time moment 𝑡 

𝜌(𝑥′, 𝑡) = 𝜑(𝑥′, 𝑡)𝜑∗(𝑥′, 𝑡) = |𝜑(𝑥′, 𝑡)|2, (A1.54) 

or 

𝜌(𝑣𝑥, 𝑡) = 𝜑(𝑣𝑥, 𝑡)𝜑
∗(𝑣𝑥 , 𝑡) = |𝜑(𝑣𝑥, 𝑡)|

2, (A1.55) 

where 

𝜂𝑥(𝑡) =
2𝜎𝑥

2(𝑡)

𝜏𝑥 𝑐𝑜𝑟(𝑡)
=

ℏ

𝑚(𝑡)
; (A1.56) 

𝜎𝑥(𝑡) is the standard deviation of the initial pseudo-stationary random process 𝑥(𝑡) from its mean 

value at time 𝑡; 𝜏𝑥 𝑐𝑜𝑟(𝑡) is the autocorrelation interval of this process at time 𝑡. 

2. The procedure (A1.46)-(A1.51) up to the proportionality coefficient 𝜂  coincides with the 

quantum-mechanical procedure (A1.42)-(A1.43) of transition from the coordinate representation 

to the impulse one. But the quantum-mechanical procedure (A1.42)-(A1.43) was obtained using a 

rather unobvious (exotic) hypothesis about the possible existence of de Broglie's waves of matter 

(which were never discovered). In contrast, the procedure (A1.46)-(A1.51) is obtained based on a 

detailed analysis of a differentiable random process with the only assumption (which may be 

questioned) that the 𝛿-function has the form (A1.20). In this regard, it is interesting to analyze which 

procedures for the transition from PDF 𝜌(𝑥) to PDF 𝜌(𝑥′) can lead to other types of 𝛿-function? 

Also, there is no need to use Louis de Broglie's hypothesis of the existence of matter waves to 

describe the diffraction of particles by a crystal. In the article [30](arXiv:2007.13527), it is shown 

that, based on the laws of geometric optics and the theory of probability, a formula was obtained 

for calculating the volumetric scattering diagrams of particles on a multilayer periodic surface of a 

crystal. 

3. In the case of studying the chaotic behavior of pico-particles, the ratio ℏ/𝑚 can be expressed 

through the main characteristics of the investigated random process (A1.45). In the author's 

opinion, this is a significant result since estimating the actual mass of a mobile elementary particle 

is almost impossible. Let’s recall that in physical reference books, only the rest of the masses of 

elementary particles are given, which are determined indirectly on the basis of complex 

experiments. Whereas it is much easier to obtain an estimate of the standard deviation 𝜎𝑥 and the 

autocorrelation interval 𝜏𝑥 𝑐𝑜𝑟 of a randomly wandering particle. It is also essential that the reduced 

Planck constant ℏ loses its fundamental character and turns out to be the dimensional coefficient 

of proportionality between the particle mass and the ratio of the averaged characteristics of the 

random process.  
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Appendix 2 

A2. Coordinate Representation of Characteristics of the Chaotically Wandering Particle (ChWP) 

A2.1 Coordinate Representation of an Average Speed of the ChWP 

For stationary and pseudo-stationary random processes (see Appendix 1), we prove the validity 

of equalities 

𝑥′𝑛 = 𝑣𝑥
𝑛 = ∫ 𝜌

+∞

−∞

(𝑥′)𝑥′
𝑛
𝑑𝑥𝑥

′ = ∫ 𝜌
+∞

−∞

(𝑣𝑥)𝑣𝑥
𝑛𝑑𝑣𝑥 = ∫ 𝜙

+∞

−∞

(𝑣𝑥)𝑣𝑥
𝑛𝜙(𝑣𝑥)𝑑𝑣𝑥

= ∫ 𝜓
+∞

−∞

(𝑥) (±𝑖𝜂𝑥
𝜕

𝜕𝑥
)
𝑛

𝜓(𝑥)𝑑𝑥, (А2.1)

 

and 

𝑥′𝑛(𝑡) = 𝑣𝑥
𝑛(𝑡) = ∫ 𝜌

+∞

−∞

(𝑥′, 𝑡)𝑥′
𝑛
𝑑𝑥𝑥

′ = ∫ 𝜌
+∞

−∞

(𝑣𝑥, 𝑡)𝑣𝑥
𝑛𝑑𝑣𝑥

= ∫ 𝜙
+∞

−∞

(𝑣𝑥, 𝑡)𝑣𝑥
𝑛𝜙(𝑣𝑥, 𝑡)𝑑𝑣𝑥 = ∫ 𝜓

+∞

−∞

(𝑥, 𝑡) (±𝑖𝜂𝑥
𝜕

𝜕𝑥
)
𝑛

𝜓(𝑥, 𝑡)𝑑𝑥, (A2.2)

 

where 𝑛 is an integer, positive degree; 𝜂𝑥 is the scale parameter (A1.51). 

Experts in the field of QM are well aware of the proof of a similar expression 

𝑝𝑥
𝑛̅̅ ̅ = ∫ 𝜌(𝑝𝑥)𝑝𝑥

𝑛𝑑𝑝𝑥

+∞

−∞

= ∫ 𝜓(𝑝𝑥)𝑝𝑥
𝑛𝜓(𝑝𝑥)𝑑𝑝𝑥

+∞

−∞

= ∫ 𝜓(𝑥) (−𝑖ℏ
𝜕

𝜕𝑥
)
𝑛

𝜓(𝑥)𝑑𝑥

+∞

−∞

, 

see, for example, [31]. However, because of the importance of this proof for this article, we present 

it in a slightly modified form as applied to the features of mass-independent stochastic quantum 

mechanics (MSQM). 

Let’s use the Fourier transforms (A1.47) and (A1.48) 

𝜙(𝑣𝑥) = ∫ 𝜓(𝑥)
е
𝑖
𝑣𝑥𝑥
𝜂𝑥

(2𝜋𝜂𝑥)
1
2

+∞

−∞

𝑑𝑥 = ∫ 𝜓(𝑥)
е𝑖
𝑝𝑥𝑥
ℏ

(2𝜋ℏ)
1
2

+∞

−∞

𝑑𝑥, (A2.3) 

𝜙∗(𝑣𝑥) = ∫ 𝜓(𝑥)
е
−𝑖
𝑣𝑥𝑥
𝜂𝑥

(2𝜋𝜂𝑥)
1
2

+∞

−∞

𝑑𝑥 = ∫ 𝜓(𝑥)
е−𝑖

𝑝𝑥𝑥
ℏ

(2𝜋ℏ)
1
2

+∞

−∞

𝑑𝑥. (A2.4) 

Substitute integrals (A2.3) and (A2.4) into the third part of Eq. (A2.1) 

𝑣𝑥
𝑛 = ∫ [∫ 𝜓(𝑥𝑖)

е
−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥

(2𝜋𝜂𝑥)
1
2

+∞

−∞

𝑑𝑥𝑖𝑣𝑥
𝑛∫ 𝜓(𝑥𝑗)

е
𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥

(2𝜋𝜂𝑥)
1
2

𝑑𝑥𝑗

+∞

−∞

] 𝑑𝑣𝑥

+∞

−∞

. (A2.5) 
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It is easy to verify by direct verification that 

𝑣𝑥
𝑛𝑒

𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥 = (−𝑖𝜂𝑥

𝜕

𝜕𝑥𝑗
)

𝑛

𝑒
𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥 , or 𝑝𝑥

𝑛𝑒𝑖
𝑝𝑥𝑥𝑗
ℏ = (−𝑖ℏ

𝜕

𝜕𝑥𝑗
)

𝑛

𝑒𝑖
𝑝𝑥𝑥𝑗
ℏ , (A2.6) 

𝑣𝑥
𝑛𝑒

−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥 = (𝑖𝜂𝑥

𝜕

𝜕𝑥𝑖
)
𝑛

𝑒
−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥 , or 𝑝𝑥

𝑛𝑒𝑖
𝑝𝑥𝑥𝑖
ℏ = (𝑖ℏ

𝜕

𝜕𝑥𝑖
)
𝑛

𝑒−𝑖
𝑝𝑥𝑥𝑖
ℏ . (A2.6a) 

Let’s rewrite (A2.5) taking into account (A2.6)

  

𝑣𝑥
𝑛 =

1

2𝜋𝜂𝑥
∫ [∫ 𝜓

+∞

−∞

(𝑥𝑖)𝑒
−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥 𝑑𝑥𝑖∫ 𝜓(𝑥𝑗) (−𝑖𝜂𝑥

𝜕

𝜕𝑥𝑗
)

𝑛

𝑒
𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥 𝑑𝑥𝑗

+∞

−∞

]
+∞

−∞

𝑑𝑣𝑥. 

or taking into account (A2.6а) 

𝑣𝑥
𝑛 =

1

2𝜋𝜂𝑥
∫ [∫ 𝜓

+∞

−∞

(𝑥𝑖) (𝑖𝜂𝑥
𝜕

𝜕𝑥𝑖
)
𝑛

𝑒
−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥 𝑑𝑥𝑖∫ 𝜓(𝑥𝑗)𝑒

𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥 𝑑𝑥𝑗

+∞

−∞

]
+∞

−∞

𝑑𝑣𝑥. (A2.7а) 

We integrate the second integral in the integrand (A2.7) 𝑛 times by parts, and we will assume 

that 𝜓(𝑥)  and its derivatives vanish at the integration boundaries 𝑥 = ±∞ . Performing these 

actions with expression (A2.7), we get [31] 

𝑣𝑥
𝑛 =

1

2𝜋𝜂𝑥
∫ [∫ 𝜓

+∞

−∞

(𝑥𝑖)𝑒
−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥 𝑑𝑥𝑖∫ 𝑒

𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥 (−𝑖𝜂𝑥

𝜕

𝜕𝑥𝑗
)

𝑛

𝜓(𝑥𝑗)𝑑𝑥𝑗

+∞

−∞

]
+∞

−∞

𝑑𝑣𝑥 , (A2.8) 

or 

𝑣𝑥
𝑛 =

1

2𝜋𝜂𝑥
∫ [∫ 𝑑𝑥𝑖

+∞

−∞

∫ 𝜓(𝑥𝑖)𝑒
𝑖
𝑣𝑥(𝑥𝑗−𝑥𝑖)

𝜂𝑥 (−𝑖𝜂𝑥
𝜕

𝜕𝑥𝑗
)

𝑛

𝜓(𝑥𝑗)𝑑𝑥𝑗

+∞

−∞

]
+∞

−∞

𝑑𝑣𝑥 . (A2.9) 

Similarly, we integrate the second integral in the integrand (A2.7a) 𝑛 times by parts, and we will 

assume that 𝜓(𝑥) and its derivatives vanish at the integration boundaries 𝑥 = ±∞. Performing 

these actions with expression (A2.7), we get 

𝑣𝑥
𝑛 =

1

2𝜋𝜂𝑥
∫ [∫ 𝑒

−𝑖
𝑣𝑥𝑥𝑖
𝜂𝑥

+∞

−∞

(𝑖𝜂𝑥
𝜕

𝜕𝑥𝑖
)
𝑛

𝜓(𝑥𝑖)𝑑𝑥𝑖∫ 𝑒
𝑖
𝑣𝑥𝑥𝑗
𝜂𝑥 𝜓(𝑥𝑗)𝑑𝑥𝑗

+∞

−∞

]
+∞

−∞

𝑑𝑣𝑥 , (A2.8𝑎) 

or

 

𝑣𝑥
𝑛 =

1

2𝜋𝜂𝑥
∫ [∫ 𝜓

+∞

−∞

(𝑥𝑖) (𝑖𝜂𝑥
𝜕

𝜕𝑥𝑖
)
𝑛

𝜓(𝑥𝑗)𝑒
𝑖
𝑣𝑥(𝑥𝑗−𝑥𝑖)

𝜂𝑥 𝑑𝑥𝑖∫ 𝑑𝑥𝑗

+∞

−∞

]
+∞

−∞

𝑑𝑣𝑥. (A2.9𝑎) 

Let’s change the order of integration in (A2.9) and (A2.9a), i.e. first we will integrate over 𝑣𝑥  

𝑣𝑥
𝑛 = ∫ 𝑑𝑥𝑖

+∞

−∞

∫ 𝑑𝑥𝑗𝜓(𝑥𝑖) (−𝑖ℏ
𝜕

𝜕𝑥𝑗
)

𝑛

𝜓(𝑥𝑗)
+∞

−∞

1

2𝜋𝜂𝑥
∫ 𝑒

𝑖
𝑣𝑥(𝑥𝑗−𝑥𝑖)

𝜂𝑥

+∞

−∞

𝑑𝑣𝑥 , 
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𝑣𝑥
𝑛 = ∫ 𝑑𝑥𝑗

+∞

−∞

∫ 𝑑𝑥𝑖𝜓(𝑥𝑗) (𝑖ℏ
𝜕

𝜕𝑥𝑖
)
𝑛

𝜓(𝑥𝑖)
+∞

−∞

1

2𝜋𝜂𝑥
∫ 𝑒

𝑖
𝑣𝑥(𝑥𝑗−𝑥𝑖)

𝜂𝑥

+∞

−∞

𝑑𝑣𝑥. 

There is a delta function in the expressions 

𝛿(𝑥𝑗 − 𝑥𝑖) =
1

2𝜋𝜂𝑥
∫ 𝑒

𝑖
𝑣𝑥(𝑥𝑗−𝑥𝑖)

𝜂𝑥

+∞

−∞

𝑑𝑣𝑥  type 𝛿(𝑥𝑗 − 𝑥𝑖) =
1

2𝜋
∫ 𝑒𝑖𝑞(𝑥𝑗−𝑥𝑖)
+∞

−∞

𝑑𝑞 . (A2.10) 

Therefore, we represent it in the form 

𝑣𝑥
𝑛 = ∫ 𝑑𝑥𝑖

+∞

−∞

∫ 𝜓(𝑥𝑖) (−𝑖𝜂𝑥
𝜕

𝜕𝑥𝑗
)

𝑛

𝜓(𝑥𝑗)
+∞

−∞

𝛿(𝑥𝑗 − 𝑥𝑖)𝑑𝑥𝑗 . (A2.11) 

𝑣𝑥
𝑛 = ∫ 𝑑𝑥𝑖

+∞

−∞

∫ 𝜓(𝑥𝑖) (𝑖𝜂𝑥
𝜕

𝜕𝑥𝑗
)

𝑛

𝜓(𝑥𝑗)
+∞

−∞

𝛿(𝑥𝑗 − 𝑥𝑖)𝑑𝑥𝑗 . (A2.11а) 

Using the properties of the 𝛿-function, we finally write  

𝑣𝑥
𝑛 = ∫ 𝜓(𝑥) (∓𝑖𝜂𝑥

𝜕

𝜕𝑥
)
𝑛

𝜓(𝑥)𝑑𝑥
+∞

−∞

, (A2.12) 

𝜂𝑥 =
2𝜎𝑥

2

𝜏𝑥𝜅𝜊𝑝
= 𝑐𝑜𝑛𝑠𝑡. (A2.12a) 

thus, Ex. (A2.1) is proved for the case of a stationary random process (SSP). 

For a pseudo-stationary random process (PSRP), Ex. (A2.2) is proved similarly. Performing 

operations similar to (A2.5)-(A2.15) using transformations (A1.52) and (A1.53), we obtain 

𝑣𝑥
𝑛(𝑡) = ∫ 𝜓

+∞

−∞

(𝑥, 𝑡) (∓𝑖𝜂𝑥
𝜕

𝜕𝑥
)
𝑛

𝜓(𝑥, 𝑡)𝑑𝑥. (A2.13) 

where 

𝜂𝑥 =
2𝜎𝑥

2

𝜏𝑥𝜅𝜊𝑝
≈ 𝜂𝑥(𝑡) ≈

2𝜎𝑥
2(𝑡)

𝜏𝑥𝜅𝜊𝑝(𝑡)
≈ 𝑐𝑜𝑛𝑠𝑡. (A2.13a) 

In the general case, the scale parameter (A1.56) can change with time 𝜂𝑥(𝑡). However, in many 

non-stationary stochastic systems, it remains unchanged since the variance 𝜎𝑥
2(𝑡)  and the 

autocorrelation radius 𝜏𝑥 𝑐𝑜𝑟(𝑡)  of the pseudo-stationary random process (PSRP) change 

simultaneously and proportionally concerning each other. For example, a situation is possible when 

the variance of the pseudo-stationary random process (PSRP) changes with time according to the 

law 𝜎𝑥
2(𝑡) = 𝜎𝑥

2 × (𝑡 − 𝑡0), and its autocorrelation coefficient changes according to the same law 

𝜏𝑥  𝑐𝑜𝑟(𝑡) = 𝜏𝑥  𝑐𝑜𝑟 × (𝑡 − 𝑡0), then 
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𝜂𝑥(𝑡) =
2𝜎𝑥

2(𝑡)

𝜏𝑥𝜅𝜊𝑝(𝑡)
≈
2𝜎𝑥

2 × (𝑡 − 𝑡0)

𝜏𝑥𝜅𝜊𝑝 × (𝑡 − 𝑡0)
≈ 𝜂𝑥 =

2𝜎𝑥
2

𝜏𝑥𝜅𝜊𝑝
= 𝑐𝑜𝑛𝑠𝑡. (A2.14) 

The invariable ratio of the main averaged characteristics of the investigated random process will 

be called: “The law of proportional constancy of the scale parameter of the stochastic system.” 

A2.2 Coordinate Representation of the Globally Averaged Change in the Mechanical Energiality 

of the ChWP 

Let’s consider the case when a change in the probability amplitude 𝜓(𝑥, 𝑡) is associated with a 

change in the kinetic energiality of the ChWP. 

Let’s return to the consideration of the conditional PDF (A1.19) 

𝜌(𝑥𝑗 , 𝑡𝑗/ 𝑥𝑖, 𝑡𝑖) =
1

2𝜋
∫ exp{𝑖𝑞(𝑥𝑗 − 𝑥𝑖) − 𝑞

2𝐵(𝑡𝑗 − 𝑡𝑖)} 𝑑𝑞

∞

−∞

, (A2.15) 

where, according to (A1.31) and under condition (A2.14) 

𝑞 =
𝑥′

𝜂𝑥
=
𝑣𝑥
𝜂𝑥
. (A2.16) 

If 𝛥𝑥 = 𝑥𝑗– 𝑥𝑖 → 0, that from Ex. (A2.16) we obtain 

lim
Δ𝑥→0

𝜌(𝑥𝑗 , 𝑡𝑗/ 𝑥𝑖 , 𝑡𝑖) =
1

2𝜋𝜂𝑥
∫ 𝑒𝑥𝑝{ −

𝑣𝑥
2

𝜂𝑥2
𝐵(𝑡𝑗 − 𝑡𝑖)}𝑑𝑣𝑥

∞

−∞

. (A2.17) 

Let’s take into account that 

𝑣𝑥
2

2
= 𝑘𝑥 , (A2.18) 

where 𝑘𝑥  is the 𝑥 -kinetic energiality of the particle, according to the terminology of mass-

independent physics (14)-(16), i.e., physics freed from the heuristic concept of “mass”. 

We also take into account that for some stochastic processes without friction, it should be 

assumed that the diffusion coefficient 𝐵3 is a complex quantity  

𝐵 = 𝑖𝐷. (A2.19) 

                                                           
3 The self-diffusion coefficient B is complex because the ChWP under consideration alternately diffuses in the chaotically 
fluctuating medium surrounding it, either in the forward direction or in the opposite direction in the vicinity of the 
conditional center of the stochastic system (see Figure 1). This vibrational behavior of the ChWP is due to the fact that it 
is alone and there is no pressure on it from the side of particles similar to it. Self-diffusion of ChWP occurs only due to 
the averaged excess (or lack) of chaotic exchange of kinetic energiality (i.e., the intensity of movement) between ChWP 
and the environment. 

In the general case, 𝐵 = 𝑒−(𝜇0−𝑖𝜇) = 𝐷𝑒𝑖𝜇 = = 𝐷[𝑐𝑜𝑠(𝜇) + 𝑖𝑠𝑖𝑛(𝜇)], where 𝜇0 and 𝜇 are the parameters of complex 
self-diffusion, 𝐷 = 𝑒−𝜇0. In the particular case, for 𝜇 = 𝜋/2, it turns out that 𝐵 = 0 + 𝑖𝐷. For 𝐷 = 𝜂𝑥 the considered 
stochastic system turns out to be self-consistent. 
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Using expressions (A2.18) and (A2.19), we write equation (A2.17) in the following form 

lim
𝛥𝑥→0

𝜌(𝑥𝑗 , 𝑡𝑗/ 𝑥𝑖 , 𝑡𝑖) =
1

2𝜋𝜂𝑥
∫ 𝑒𝑥𝑝{ − 𝑖

𝑣𝑥
2

2

2𝐷

𝜂𝑥2
(𝑡𝑗 − 𝑡𝑖)}𝑑𝑣𝑥

∞

−∞

. (A2.20) 

Substitute (A2.20) into an expression like Ex. (A.1.17)  

∫ [∫ ∫ 𝜓(𝑥, 𝑡𝑖)
1

2𝜋𝜂𝑥
𝑒𝑥𝑝{ − 𝑖

𝑣𝑥
2

2

2𝐷

𝜂𝑥2
(𝑡𝑗 − 𝑡𝑖)}𝜓(𝑥, 𝑡𝑗)𝑑𝑡𝑖𝑑𝑡𝑗

∞

−∞

∞

−∞

] 𝑑𝑣𝑥

∞

−∞

= 1. (A2.21) 

and change the order of integration 

∫ [∫ ∫ 𝜓(𝑥, 𝑡𝑖)
1

2𝜋𝜂𝑥
𝑒𝑥𝑝{ − 𝑖

𝑣𝑥
2

2

2𝐷

𝜂𝑥2
(𝑡𝑗 − 𝑡𝑖)}𝜓(𝑥, 𝑡𝑗)𝑑𝑡𝑖𝑑𝑡𝑗

∞

−∞

∞

−∞

] 𝑑𝑣𝑥

∞

−∞

= 1. (A2.22) 

We write Ex. (A2.22) similarly to Ex. (A1.22) 

∫ [
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥, 𝑡𝑗) 𝑒𝑥𝑝{ − 𝑖

𝑣𝑥𝑗
2

2

2𝐷

𝜂𝑥
2 𝑡𝑗}𝑑𝑡𝑗

1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥, 𝑡𝑖) 𝑒𝑥𝑝{ 𝑖

𝑣𝑥𝑖
2

2

2𝐷

𝜂𝑥
2 𝑡𝑖}𝑑𝑡𝑖

∞

−∞

∞

−∞

]
∞

−∞

𝑑𝑣𝑥 = 1 (A2.23) 

From Ex. (A2.23), by analogy with (A1.22)-(A1.25), two Fourier transforms follow  

𝜙(𝑘𝑥𝑗 , 𝑡𝑗) =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥, 𝑡𝑗) 𝑒𝑥𝑝{ − 𝑖𝑘𝑥𝑗

2𝐷

𝜂𝑥2
𝑡𝑗}𝑑𝑡𝑗

∞

−∞

, (A2.24) 

𝜙(𝑘𝑥𝑖, 𝑡𝑖) =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥, 𝑡𝑖) 𝑒𝑥𝑝{ 𝑖𝑘𝑥𝑖

2𝐷

𝜂𝑥2
𝑡𝑖}𝑑𝑡𝑖

∞

−∞

. (A2.25) 

The change in the mechanical energiality of the ChWP εkx due to the change in its kinetic 

energiality at the point 𝑥  at the intermediate time 𝑡 = (𝑡𝑗 + 𝑡𝑖)/2 as 𝜏 = 𝑡𝑖– 𝑡𝑗 → 0 (tending to 

zero) is on average equal to 

𝜀𝑘𝑥 = lim
𝜏→0

(𝑘𝑥𝑗 + 𝑘𝑥𝑖)/2. (A2.26) 

Therefore, instead of integrals (A2.24) and (A2.25) for any intermediate time 𝑡, we can write 

𝜙(𝜀𝑘𝑥, 𝑡) =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥, 𝑡) 𝑒𝑥𝑝{ − 𝑖

𝐷

𝜂𝑥2
𝜀𝑘𝑥𝑡}𝑑𝑡

∞

−∞

, (A2.27) 

𝜙∗(𝜀𝑘𝑥, 𝑡) =
1

√2𝜋𝜂𝑥
∫ 𝜓(𝑥, 𝑡) 𝑒𝑥𝑝{ 𝑖

𝐷

𝜂𝑥2
𝜀𝑘𝑥𝑡}𝑑𝑡

∞

−∞

. (A2.28) 

According to expression (51), the globally averaged change {increase (+) or decrease (–)} of the 

mechanical energiality of the ChWP is equal to 

±< 𝜀𝑘(𝑥, 𝑡) >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ± ∫ 𝜌(𝜀𝑘𝑥, 𝑡)𝜀𝑘𝑥𝑑𝜀𝑘𝑥 =

∞

−∞

± ∫ 𝜑(𝜀𝑘𝑥, 𝑡)𝜀𝑘𝑥𝜑
∗(𝜀𝑘𝑥, 𝑡)𝑑𝜀𝑘𝑥,

∞

−∞

(A2.29) 
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where 𝜀𝑘𝑥 is a local change in the mechanical energiality of the ChWP due to a slight change in its 

kinetic energiality in the direction of the 𝑋-axis; 𝜌(𝜀𝑘𝑥, 𝑡) is the probability distribution function 

(PDF) of changes 𝜀𝑘𝑥. 

To write the Ex, (A2.29) in a coordinate representation, we perform actions similar to (A2.1)-

(A2.13), taking into account the Fourier transformations (A2.27)-(A2.28) and the validity of the 

expressions 

𝜀𝑘𝑥
𝑛 𝑒

𝑖
2𝐷

𝜂𝑥
2𝜀𝑘𝑥𝑡

= (−𝑖
𝜂𝑥
2

𝐷

𝜕

𝜕𝑡
)

𝑛

𝑒
𝑖
2𝐷

𝜂𝑥
2𝜀𝑘𝑥𝑡

, (A2.30) 

𝜀𝑘𝑥
𝑛 𝑒

−𝑖
2𝐷

𝜂𝑥
2𝜀𝑘𝑥𝑡

= (𝑖
𝜂𝑥
2

𝐷

𝜕

𝜕𝑡
)

𝑛

𝑒
−𝑖
2𝐷

𝜂𝑥
2𝜀𝑘𝑥𝑡

. 

As a result, we obtain a coordinate representation of the globally averaged change in the 

mechanical energiality of the ChWP due to the change in its averaged kinetic energiality 

< 𝜀𝑘(𝑥, 𝑡) >= ∫ 𝜌(𝜀𝑘𝑥, 𝑡)𝜀𝑘𝑥𝑑𝜀𝑘𝑥 =
∞

−∞

± 𝑖
𝜂𝑥
2

𝐷
∫ 𝜓(𝑥, 𝑡)

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥.

+∞

−∞

(A2.31) 

The proof of the validity of Еx. (A2.31) completely coincides with the proof of Еx. (A2.13)4. 

Abbreviations and Definitions 

MSQM is the mass-independent stochastic quantum mechanics; 

QM is the quantum mechanics; 

PSRP is the pseudo-stationary random process; 

SQM is the stochastic quantum mechanics; 

SRP is the stationary random process; 

PA is the probability amplitude;  

PDF is the probability density function; 

ChWP is the chaotically wandering particle; 

Pico-particle is a particle or antiparticle with a size of ~10–8–10–13 cm; 

Micro-particle is a particle with dimensions of ~10–7–10–3 cm; 

Macro-particle is a compact bodies with dimensions of ~10–2–104 cm; 

s = S/m is the “efficiency” of the particle with mass 𝑚; 

ε = E/m is the “mechanical energiality” of the particle with mass 𝑚; 

u = U/m is the “potential energiality” of the particle with mass 𝑚; 

k = T/m is the “kinetic energiality” of the particle with mass 𝑚.  
  

                                                           
4 The similarity of the proofs of Еx.s (A2.13) and (A2.31) corresponds to the space-time symmetry between 𝑝𝑥𝑥 and 𝐸𝑥𝑡 
(or 𝑣𝑥𝑥  and 𝜀𝑥𝑡 ) in the de Broglie wave function 𝜓 = 𝑒𝑥𝑝– 𝑖(𝑝𝑥𝑥– 𝐸𝑥𝑡)/ℏ = = 𝑒𝑥𝑝– 𝑖(𝑣𝑥𝑥– 𝜀𝑘𝑥𝑡)𝑚/ℏ =
𝑒𝑥𝑝– 𝑖(𝑣𝑥𝑥– 𝜀𝑘𝑥𝑡)𝜂𝑥, which underlies classical QM. 
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