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Abstract 

Thrombotic Microangiopathy (TMA) is a syndrome characterized by microangiopathic 

hemolytic anemia (MAHA) and thrombocytopenia. The presence of schistocytes on peripheral 

smear, a negative Coombs test, elevated lactate dehydrogenase, increased reticulocyte count 

and low haptoglobin are often the clues for MAHA. The microvascular process often targets 

vasculature in kidneys, brain, gastrointestinal system, heart, and skin. A timely diagnosis and 

treatment are often crucial to prevent severe end organ damage and death. TMA is classified 

into primary and secondary forms. Primary TMA includes TTP and complement mediated or 

atypical hemolytic uremic syndrome (aHUS), often related to a mutation or deficiency and 

clinically expressed in the setting of a precipitant condition. Secondary TMA is a manifestation 

of underlying disorder and can occur in clinical scenarios associated with autoimmune disease, 

malignancy, infections, SOT (Solid Organ Transplant), pregnancy, HSCT (Hematopoietic Stem 
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Cell Transplantation), medications, or methylmalonic acidemia. Transplant associated TMA 

(TA-TMA) can be complement mediated or aHUS and could be related to the ischemic 

reperfusion injury, induction regimen, calcineurin inhibitor (CNI) use, mammalian target of 

rapamycin (MTOR) inhibitor use, or could be infection related. Cost, access, and turnaround 

time are often the limitations for certain TTP and complement specific testing. Treatment 

should not be delayed while waiting for such tests. Treatment must be individualized based 

on the underlying cause of TMA. Terminal complement blockade utilizing monoclonal 

antibodies directed against C5 complement is the treatment for complement mediated TMA. 

C5 inhibitors have also been used successfully in treatment of secondary HUS cases where, 

unlike aHUS, defects in complement cannot be demonstrated. Such treatment has 

demonstrated improvement in renal function, MAHA and platelet counts. 
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1. Introduction 

Thrombotic microangiopathy (TMA) is characterized by non-immune intravascular hemolysis and 

ischemic organ dysfunction. Clinical presentation is often variable, non-specific and depends on the 

etiological cause and the organ affected. TMA often targets the microvasculature in kidneys, brain, 

gastrointestinal system, heart, and skin [1, 2]. It is crucial to diagnose and initiate treatment in a 

timely fashion to prevent severe end organ injury and death. 

TMA post lung transplantation is under reported compared to TMA post hematopoietic stem cell 

transplantation (HSCT) or renal transplant. 

2. Incidence, Epidemiology and Types 

TMA is to be suspected if there is evidence of thrombocytopenia and microangiopathic hemolytic 

anemia (MAHA). The presence of schistocytes on peripheral smear, negative Coombs test, elevated 

lactate dehydrogenase, increased reticulocyte count and low haptoglobin are often the clues for 

MAHA [2]. Though schistocytes are supportive of the diagnosis, lack of them does not rule out the 

diagnosis, especially when there is a clinical suspicion or other findings are present. TMA is a 

continuum process and schistocytes might not always be present on initial evaluation and may need 

frequent assessment [3]. 

TMA is classified into primary and secondary forms. The onset of TMA syndromes can be sudden 

or gradual. Despite being so diverse, TMA syndromes have common clinical and pathological 

features. Clinical features being the triad of MAHA, thrombocytopenia, and end organ injury while 

the pathological features include endothelial damage, fibrin thrombi generation and 

microvasculature damage [4, 5]. The degree of thrombocytopenia may vary based on the 

pathophysiological process. In TTP, platelet rich microthrombi predominate and the median platelet 

count is <20,000. In HUS, fibrin-rich microthrombi predominate and platelet counts are either 

<150,000 OR at least a 25% decrease from baseline. 
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Primary TMA includes thrombotic thrombocytopenic purpura (TTP) and complement mediated 

or atypical hemolytic uremic syndrome (aHUS), often related to a mutation or deficiency and 

clinically expressed in the setting of a precipitant condition. From a clinical standpoint, TTP often 

affects the brain and GI system and rarely causes acute kidney injury (AKI). Severe AKI is prominent 

in HUS or complement mediated TMA [4-6]. 

Secondary TMA is a manifestation of underlying disorder and can occur in clinical scenarios 

associated with autoimmune disease, malignancy, infections, Solid Organ Transplant (SOT), 

pregnancy, HSCT, medications, or methylmalonic acidemia [4-6]. 

2.1 Primary TMA 

2.1.1 TTP 

TTP is a rare and fatal condition. The incidence of TTP is 2-6 per million persons [7, 8]. TTP can be 

hereditary or acquired and is characterized by deficiency of ADAMTS-13. Hereditary TTP (Upshaw-

Schulman Syndrome) is caused by ADAMTS13 mutations [4]. Acquired TTP, an autoimmune disorder, 

is caused by inhibition of ADAMTS13 activity by autoantibodies [5, 9]. Deficiency of ADAMTS-13 

results in large von Willebrand factor (VWF) multimers which increase the risk for platelet 

aggregation and thrombi generation in the small vasculature. The vast majority of TTP cases are 

acquired or immune. 

Diagnosis of TTP and cause can be achieved by measuring the levels of ADAMTS-13 activity, 

ADAMTS-13 Ag, and inhibitors. A plasma level of <10 IU/dL ADAMTS-13 activity confirms the TTP 

diagnosis. Extremely low or absent ADAMTS-13 Ag can be seen in hereditary TTP, which is a rare 

autosomal recessive condition [10-12]. The presence of autoantibodies against ADAMTS-13 can 

point towards the diagnosis of autoimmune or acquired TTP. These auto antibodies, usually IgG, 

play a role either by causing rapid clearance of ADAMTS-13 or by interfering with the VWF 

recognition [13]. 

While interpreting the ADAMTS 13 activity, it is important to acknowledge that these levels can 

be reduced, however greater than 10 IU/dL in other conditions such as pregnancy, severe sepsis, 

DIC, metastatic malignancy, SLE, severe liver dysfunction, aHUS and Shiga toxin (Stx)-producing 

Escherichia coli HUS (Stx E. coli HUS; STEC-HUS) [14, 15]. 

2.1.2 Atypical HUS/Complement Mediated TMA 

Diagnosis of atypical HUS is often made on exclusion of all other forms of TMA. It is the result of 

dysregulation and uncontrolled activation of the alternate complement pathway. Presence of 

complement factor H antibodies (5-10% aHUS cases) or complement mutations can activate the 

terminal phase of complement pathway and membrane attack complex formation thereby resulting 

in extensive endothelial cell damage, platelet aggregations and microthrombi generation [5, 16, 17]. 

Assessment of soluble C5b-9 levels, complement regulatory factors such as CFH (Complement 

Factor H), complement factor I; MCP, membrane cofactor protein; C3, complement component C3; 

CFB, complement factor B can aid in the diagnosis of aHUS [18, 19]. 

Hereditary complement mediated TMA is a result of regulatory gene (CFH, CFI, CD46) or effector 

gene (CFB, C3) mutations [4]. Acquired form of complement mediated TMA can result from a 
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deficiency in complement factor H secondary to antibodies to the complement (10% of cases) [20, 

21]. 

2.1.3 Shiga Toxin Mediated HUS 

Shiga toxin mediated HUS is often an infection related more commonly with Shiga toxin 

producing bacteria, especially E. coli serotype O157:H7. Other potential infectious culprits include 

S. pneumoniae and Shigella. Bacterial cytotoxins can damage the vascular endothelial cells, RBC’s 

and platelets, which in turn can amplify the complement activation. Patients can present with 

symptoms of severe abdominal pain or bloody diarrhea [22, 23]. 

Diagnosis of the infection and appropriate treatment is crucial to decrease the cytotoxin 

production and culminate the exaggerated complement activation process. Stool testing can aid in 

the identification of the Shiga toxin, especially in the acute colitis phase [24]. 

2.2 Secondary TMA 

2.2.1 Transplant Associated TMA 

TMA has been reported after solid organ transplantation, however the reported incidence has 

been variable given the lack of consensus on the diagnosis of transplant associated TMA (TA-TMA) 

[25]. TA-TMA can be complement mediated or aHUS type and could be related to the ischemic 

reperfusion injury, induction regimen, calcineurin inhibitor (CNI) use, mammalian target of 

rapamycin (MTOR) inhibitor use, or could be infection related. TMA in transplant setting can occur 

as a de novo event or as a recurrent disease. Recurrent disease can be seen in patients with genetic 

aberrations of complement system [26]. TA-TMA can occur in early post operative period or later. 

An accurate diagnosis can be challenging in post operative state and can be confounded by factors 

such as ischemic reperfusion insult, post operative hemodynamics, and sepsis. The clinical spectrum 

of TA-TMA can range from a limited disease, chronic organ dysfunction or systemic TMA with multi 

organ dysfunction. TMA after lung transplantation could be a result of atypical HUS or secondary 

factors such as CNI use and opportunistic infections. Systemic TMA is often associated with 

significant morbidity and mortality [27]. 

The pathogenesis of TMA post transplantation remains poorly understood. However, different 

mechanisms have been speculated including acquired deficiency of ADAMTS13 either in a post 

operative state or in the presence of inhibitor antibodies [28]. Neutrophil activation and neutrophil 

extracellular traps released from endothelial injury has been described, that can result in 

complement activation, complement factor P and C5b-9 deposition [29-31]. Acquisition of donor 

complement regulatory proteins appeared to increase the risk of TA-TMA [32]. Also, an association 

of HLA-DRB1*11 and TTP has been reported [33]. 

A multiple hit theory has been proposed in HSCT literature with the preexisting host factors such 

as underlying predisposition for complement activation or preexisting endothelial injury being the 

initial hit, conditioning regimen or ischemic reperfusion injury and subsequent endothelial cell 

activation being the second hit, and finally the alloreactivity or medication or infections being the 

third hit, eventually triggering the complement cascade activation [34]. Complement activation can 

be confirmed by significant elevations in C3b and C5b-9 [35]. Diagnosis and treatment of TA-TMA is 

crucial to stop the dysregulation process and halt the end organ damage [36, 37]. 
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TA-TMA could also be related to acquired deficiency of ADAMTS13 activity. Metivier and 

colleagues assessed ADAMTS13 activity in lung transplant recipients with suspected TMA. 3 out of 

8 patients had extremely low ADAMTS13 activity (<5%) while the remaining had low but detectable 

levels [38]. 

Hachem and colleagues reported an incidence of 3.8 cases per 100 years in their retrospective 

review of 262 lung transplants between January 1, 1999, and December 31, 2003. The median onset 

of TMA was 265 days, with as early as 17 days and as late as 4 years post transplantation. 11 out of 

24 instances were isolated TMA while the rest of them occurred in the setting of other illnesses such 

as pneumonia, graft dysfunction, CMV infection, post-transplant lymphoproliferative disorder and 

reversible posterior leukoencephalopathy. They noted a higher incidence of TMA with the 

combination of CNI and sirolimus. Female gender, history of TMA and immunosuppressive regimen 

were noted to be the significant predictors of TMA [39]. 

Fortin et al reported that the immunosuppressive combination of cyclosporine and sirolimus has 

both pro-necrotic and anti-inflammatory effects on the endothelial cells [40]. There have been 

reports of TMA in the setting of infections in lung transplant recipients [41]. 

2.2.2 Drug Induced 

Drug induced TMA (DITMA) can be immune mediated or nonimmune mediated, dose dependent 

direct endothelial cell damage [42] (Table 1). 

Table 1 Potential Drug-Induced Causes of TMA. 

Pharmacological Category Drug Name 

Calcineurin inhibitor Tacrolimus 

 Cyclosporine 

MTOR inhibitor Sirolimus 

 Everolimus 

Atypical antipsychotic Quetiapine 

Antibiotic Sulfamethoxazole-trimethoprim 

 Rifampin 

Antimalarial Quinine 

Proteasome inhibitor Bortezomib 

 Carfilzomib 

Chemotherapy Mitomycin 

 Gemcitabine 

 Docetaxel 

 Vincristine 

 Pentostatin 

VEGF inhibitor Bevacizumab 

 Ponatinib 

 Sunitinib 

Opioid Oxycodone 
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Immune Mediated Mechanism: Quinine was the first drug to be implicated in the development 

of drug dependent antibodies binding to multiple cell antigens and endothelial cell activation [43, 

44]. Subsequently quetiapine and gemcitabine were reported to be associated with acute episodes 

of TMA on repetitive exposure [45, 46]. Such immune mediate reaction is related to the structural 

elements of the drugs complementary to the epitope and the antibody [47]. 

Dose dependent mechanism: Drugs such as immunosuppressants, chemotherapeutic agents and 

VEGF inhibitors in a dose dependent fashion can cause endothelial dysfunction, prostacyclin 

inhibition, platelet aggregation thereby resulting in TMA [48, 49]. 

DITMA pathophysiology depends on the offending drug. Mitomycin, gemcitabine, interferon, 

quinolones are implicated in direct endothelial damage and pro thrombotic activation. Anti VEGF 

monoclonal drugs such as bevacizumab and tyrosine kinase inhibitors such as sunitinib and 

pazopanib interfere with VEGF pathway signal protein and receptor affecting the homeostasis of 

endothelial podocyte complex in the kidney. Carfilzomib can cause decreased CFH expression and 

thereby result in complement mediated TMA. Downregulation of transcription factor such as NF-

KB, by agents such as calcineurin inhibitors can create a prothrombotic state, augment the oxidative 

stress, decrease nitric oxide concentration and VEGF production and can result in TMA [50]. 

2.2.3 Infections 

Several infectious agents have been implicated in secondary TMA (Table 2). TMA has been 

reported in HIV infections [51]. Though the exact mechanism is unclear, there has been speculations 

that TMA could be a result of primary endothelial injury from the virus while some reports suggest 

ADAMTS 13 deficiency [52, 53]. There have been reports of TMA association with viral Infections 

such as adenovirus, BK virus, CMV, HHV6, parvovirus B19 and fungal infections such as aspergillus 

[54, 55]. aHUS can be triggered by SARS-CoV-2, could be a result of direct toxic effect on endothelial 

cells or complement activation [56]. Based on the clinical presentation and suspicious agent, 

appropriate testing should be deployed for accurate diagnosis and treatment of the infectious agent. 

Table 2 Infections. 

Pathogen Class Organisms 

Bacteria 

Streptococcus pneumonia 

Legionella 

Rickettsiae 

Borrelia 

Brucella 

Ehrlichia 

Leptospira 

Rocky Mountain Spotted Fever 

Viruses 

Cytomegalovirus 

COVID-19 

Epstein Barr Virus 

Parvo virus B19 

Varicella Zoster 

Human Herpes Virus 6 
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Coxsackie Virus 

Noro virus 

Human Immunodeficiency virus 

Influenza A 

Dengue 

Hepatitis viruses 

Fungi 

Aspergillus 

Blastomyces 

Cryptococcus 

Parasites 
Malaria 

Babesia 

2.2.4 Pregnancy 

TTP can occur or relapse during the first trimester of pregnancy [57]. HELLP Syndrome often 

associated with pre-eclampsia is characterized by MAHA, thrombocytopenia, and liver damage [58]. 

The onset of aHUS in immediate post-partum phase is related to the loss of complement regulators 

present on placental surface [59, 60]. 

2.2.5 Malignancy 

TMA in the setting of malignancy could be related to cancer itself or could be secondary to 

chemotherapy. Metastatic cancer cells can cause microvascular obstruction and injury. 

Chemotherapy related TMA can be either from non-immune mediated dose dependent cytotoxicity 

or from immune mediated mechanism with development of drug dependent antibodies [61]. 

2.2.6 Autoimmune Diseases 

Autoimmune disorders such as SLE and systemic scleroderma are associated with TMA. Diagnosis 

of such autoimmune conditions requires the need for extensive autoimmune panel testing [62]. 

2.2.7 Malignant Hypertension 

Malignant hypertension can trigger an aHUS. TMA in the setting of malignant hypertension is 

related to direct endothelial injury. These patients can have ocular signs of hypertensive retinopathy 

[2, 5]. aHUS can be accompanied by malignant hypertension. 

2.2.8 Methylmalonic Acidemia 

Cobalamin C disease (hereditary metabolic disorders of vitamin B12), result of mutations of gene 

encoding the methylmalonic aciduria and homocystinuria type C protein, can result in 

methylcobalamin deficiency resulting in hyperhomocystinemia, decreased plasma methionine 

levels and methylmalonic aciduria [63]. Elevated levels of methylmalonic acid and homocysteine 

accumulation in blood and tissues can cause endothelial cell damage, platelet activation and 

coagulation activation [64, 65]. 
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2.2.9 Coagulation Mediated TMA 

Mutations of thrombomodulin, plasminogen, protein kinase C-associated protein, diacylglycerol 

kinase E can be associated with TMA, and are related to the role of coagulation factors in the 

pathogenesis of TMA. Loss of DGKE function and Protein Kinase C activation result in upregulation 

of pro thrombotic factors and downregulation of VEGF receptor thereby creating a prothrombotic 

state [66, 67]. 

3. Diagnosis 

In the right clinical context, presence of anemia, thrombocytopenia, and schistocytes (>2 per high 

powered field or >1% schistocytes) on a peripheral smear is often diagnostic. TMA is often 

associated with other lab abnormalities such as elevated LDH (lactate dehydrogenase), low 

haptoglobin, increased reticulocyte count and unconjugated hyperbilirubinemia, which reflect 

MAHA. Direct Coombs test is negative in TMA. Often the coagulation parameters (Prothrombin Time, 

activated Partial Thromboplastin Time) are normal, however can be abnormal in severe clinical 

presentations with septic shock, DIC and end organ failure [5, 6]. DIC itself is a MAHA and often it is 

very difficult to define an aHUS or TTP in the setting of active DIC. While MAHA is an essential feature 

for TMA, it is important to be aware that at times lung transplant patients need extracorporeal 

support either in pretransplant, or post-transplant or both phases and such extracorporeal support 

use can also result in MAHA. In such cases, obtaining baseline MAHA labs could help identify the 

syndrome sooner. 

Cost, access, and turnaround time are often the limitations for certain TTP and complement 

specific testing. Treatment should not be delayed while waiting for such tests. On suspicion of TMA, 

ADAMTS13 or TTP specific testing and complement assessment should be performed in addition to 

the work up for the evaluation of the secondary conditions that could be associated with TMA. 

3.1 TTP Assessment 

Measurement of ADAMTS-13 activity, ADAMTS-13 Ag, and inhibitors can aid in the diagnosis and 

the cause of TTP. A plasma level of <10 IU/dL ADAMTS-13 activity confirms the TTP diagnosis [10-

13]. Genetic testing to rule out congenital TTP should be considered if ADAMTS13 activity and 

ADAMTS13 inhibitor levels are undetectable. 

3.2 Complement Assessment 

Low levels of serum complement C3, C4 can be seen in several pathologies such as aHUS (C3 

consumption only in 30-50% of patients), TTP, STEC-HUS and glomerulonephritis. Elevated soluble 

C5b-9 levels is a finding of terminal complement pathway overactivation [68]. Properdin, an 

alternate pathway regular, levels are reduced in complement activation [5]. Factor B levels could 

indicate a pathway involved in C3 consumption. Measurement of total hemolytic complement 

(CH50) is used to assess the classic complement activation pathway. Low levels of CH50 are seen in 

congenital complement deficiencies, complement factor deficiencies, increased consumption of 

complements, infections, and auto immune disease processes such as SLE [5]. Low levels of 

alternative pathway complements (AP50 assay) can be seen in FB, FD, FH and properdin deficiencies, 

aHUS and STEC-HUS [5, 21, 69]. Plasma MASP2 levels can be measured to assess the lectin pathway 
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activation [70]. Anti CFH antibody testing (50-60% aHUS patients) and genetic mutational analysis 

(CFH, CFI, MCP, C3, CFB, THBD, CFH/CFHR hybrid gene, DGKE, PLG) should be considered in patients 

with aHUS picture [5, 21, 71, 72]. 

3.3 Assessment of Secondary Factors 

An assessment of secondary factors associated with TMA should include work up for infections, 

DIC, auto immune disease and cobalamin metabolism disorders. 

Infectious work-up should include assessment for viral infections such as CMV, EBV (Epstein Barr 

Virus), adenovirus, parvovirus B19, BK virus, HIV, bacterial infections like streptococcus, and fungal 

infections like aspergillus. Stool Polymerase Chain Reaction testing or cultures for Shiga toxin E. coli 

should be considered in patients with abdominal symptoms and diarrhea [52-55]. Elevated levels of 

methylmalonic acid and homocysteine accumulation in the serum and urine samples are seen in 

Cobalamin C disease. Such abnormal tests should be followed by MMACHC genetic testing for 

confirmation [5, 64]. Autoimmune testing should include antinuclear antibodies (ANA), anti-double-

stranded DNA (ds-DNA) antibodies, anti-extractable nuclear Ag antibodies, anti-topoisomerase I 

(anti Scl-70) antibody, anticentromere antibody (ACA) and anti-RNA polymerase III antibodies, anti-

cardiolipin antibody, anti-b2GP-1 antibody, and lupus anticoagulant (LA) [62, 63]. 

3.4 Histopathology 

Histopathological confirmation is not mandatory for TMA diagnosis. Often, such a need can be 

particularly challenging. TMA diagnosis is often made on clinical grounds with an etiological and an 

exclusion approach. The classic histological signs of TMA include endothelial cell swelling, luminal 

fibrin platelet thrombi, and minimal or absent inflammation. Vasculature changes may include 

intimal swelling, proliferation, and necrosis of the arterial wall or thrombi in lumen [4, 5, 73, 74]. 

Positive C5b-9 staining in kidney, skin clues towards complement-mediated TMA [73]. Autopsy 

studies have demonstrated such histological signs in organs such as heart, lungs, and brain. If 

feasible, kidney, skin, GI system are the suggested sites for biopsy [73, 74]. 

4. Treatment 

Given there are no general guidelines for treatment of TMA, treatment must be individualized 

based on the mechanism and underlying causative factors of disease to yield optimal patient 

outcomes. Prior to organ transplantation, it is ideal to minimize the risk of complement over-

activation before donation, prevent hypoperfusion during the process or organ procurement, and 

avoid prolonged cold ischemia time [75]. 

4.1 Immunosuppression Considerations 

In the setting of de novo TMA post-transplantation occurring secondary to immunosuppression, 

the offending agent should be reduced or stopped immediately. This occurs most commonly in the 

setting of CNI use post-transplant and the patient is typically switched to the alternative CNI or an 

MTOR inhibitor once deemed clinically appropriate based on TMA resolution [76]. In cases where 

continuation of a CNI is desired, tacrolimus can be switched to cyclosporine and vice versa. Verbiest 

et al. conducted a review of the literature of TMA management in non-renal solid organ transplant 
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recipients. Patients were converted to the alternative CNI in 63 of the cases that were analyzed and 

95% of patients had positive outcomes; although it should be noted that these cases were primarily 

mild in terms of TMA severity [77]. As previously mentioned, switching patients from a CNI to an 

MTOR inhibitor can also be considered along with using an MTOR inhibitor in combination with a 

CNI at a reduced dose. However, this strategy carries a risk of limitations as MTOR inhibitors can 

promote various adverse effects such as thrombotic events and TMA. In a case report presented by 

Negrini et al., after a kidney transplant recipient was switched from tacrolimus to sirolimus for 

maintenance immunosuppression, the patient subsequently developed deep vein thrombosis, 

ischemic colitis, and biopsy proven TMA [78]. Additionally, it must be considered that MTOR 

inhibitors also demonstrate additional adverse effects such as nephrotoxicity, myelosuppression, 

and lower immunosuppressive potency compared to CNIs [79, 80]. As a result, patients must be 

monitored diligently when switched to MTOR inhibitors in this setting and the decision should be 

balanced with the risk of graft rejection. 

In the setting of de novo TMA induced by immunosuppression, another alternative agent that 

can be considered is Belatacept as it has not been shown to have similar endothelial toxicity 

properties to those seen with CNIs and MTOR inhibitors. Belatacept is a cytotoxic T lymphocyte 4-

immunoglobulin fusion protein that prevents the activation of T cells that block the CD28 

costimulation pathway [75, 76]. Successful use of Belatacept as an alternative immunosuppressant 

in setting of post-transplant TMA was first described in case report by Ashman et al. In this case, a 

kidney transplant recipient experienced three episodes of drug-induced TMA associated with 

cyclosporine, tacrolimus, and sirolimus before the patient was transitioned to Belatacept. Once 

converted and after nine months of follow-up, the patient had complete TMA resolution along with 

no significant drug adverse events noted [81]. In a cohort of 115 kidney transplant recipients 

presented by Morel et al. where three-year outcomes were assessed in patients converted from a 

calcineurin inhibitor to Belatacept, 11 patients were identified to have a diagnosis of CNI-induced 

TMA. After patients were converted to Belatacept, all cases of TMA resolved along with a 92% graft 

survival rate at three years post-conversion [82]. While Belatacept can be considered in this setting, 

it must be noted that it has been demonstrated in multiple investigations to have higher rates of 

acute rejection, particularly in renal transplantation, when compared to traditional 

immunosuppression along with potential increased risk of post-transplant lymphoproliferative 

disorder [82-85]. 

While immunosuppression should be altered in the setting of acute drug-induced TMA to avoid 

a poor prognosis, the causative agent can be rechallenged if deemed clinically appropriate or 

necessary by the clinician. However, outcomes utilizing this strategy are conflicting when evaluated 

in different types of solid organ transplant based on available case report data [77]. 

4.2 Plasma Exchange 

In the setting of post-transplant TMA that is unresponsive to conventional measures or 

associated with antibody-mediated rejection, plasma exchange (PE) or plasmapheresis (PP) can be 

considered along with concomitant IVIG and additional immunosuppression if indicated [75]. 

However, it is important to note that the use of plasma exchange in the setting of TMA induced by 

CNIs or MTOR inhibitors is not well established and should be considered on an individualized 

patient-specific basis according to the American Society for Apheresis guidelines [77]. Additionally, 
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randomized controlled trials are lacking on the use of plasma exchange in this setting for both 

hematopoietic and solid organ transplant recipients. Based on available case report data, it is 

challenging to draw any concrete conclusions given the heterogeneity of the findings as some case 

reports found withdrawal of the CNI to be the optimal choice, others found no difference between 

plasma exchange or CNI conversion, while others found worse outcomes in patients that were 

treated with plasma exchange alone [28,86-88]. 

Patients that develop TMA because of antibody-mediated rejection tend to respond significantly 

better to plasma exchange and concomitant IVIG compared to drug-induced TMA. Plasma exchange 

can remove HLA-specific antibodies while IVIG can further suppress alloantibodies and modulate 

immune response [76]. In a retrospective review of renal allograft biopsies, Satoskar et al found a 

TMA prevalence of 13.6% in patients with C4d positive biopsies compared to 3.6% in C4d negative 

biopsies. While not a statistically significant finding, they found that patients with C4d positive TMA 

that received plasma exchange had a lower rate of graft loss compared to those that did not [89]. 

In another investigation, Satoskar et al. analyzed outcomes of patients with graft dysfunction. They 

evaluated patient outcomes and compared two-year graft survival in patients with C4d positive 

AMR-associated graft dysfunction who received plasmapheresis and IVIG to those who did not 

receive therapy. While receipt of plasmapheresis and IVIG did not show significant improvement 

survival and graft function in the overall cohort at 2 years post-transplant, all patients with TMA in 

the study cohort who received plasmapheresis sand IVIG had functioning grafts at the two-year 

follow up indicating the beneficial effects of plasma exchange and IVIG in this setting [90]. 

As previously discussed, utilization of plasma exchange should be individualized based on the 

causative factor of TMA for the patient to balance the potential benefits vs. risks and adverse effects 

of therapy including thrombosis, bleeding, infection, and hypotension. 

4.3 Complement Directed Therapy 

The role of complement as a target for TA-TMA has increased based on efficacy seen in the 

treatment of aHUS and the similarities in activation of the complement system. Anti-complement 

therapies target the underlying complement-mediated vascular lesion [91]. C5 inhibitors are 

humanized monoclonal antibodies that bind to the complement protein C5, preventing cleavage 

into C5a and C5b which inhibits the formation of terminal complex C5b-9, including the formation 

of MAC. Eculizumab is a C5 inhibitor currently indicated for the treatment of PNH, aHUS, gMG and 

NMOSD. Ravulizumab, derived from eculizumab, exhibits high-affinity binding, as well as 

substitution of 4 amino acids in the complementary binding and neonatal Fc regions of the 

eculizumab backbone, leading to a terminal half-life that is approximately 4 times than that of 

eculizumab. Ravulizumab is currently indicated for the treatment of PNH, aHUS and gMG [92-94]. 

Alternative complement pathway activation plays a role in the pathogenesis of TA-TMA; therefore, 

suggesting the utility of eculizumab and ravulizumab in the setting of TA-TMA. 

Literature on eculizumab use for TA-TMA has been historically limited to HSCT [95]. Jodele et al. 

described the use of eculizumab in a pediatric cohort of 64 patients with high-risk TA-TMA. The 

study demonstrated a response rate of 64% and 1-year survival rate of 66% after HSCT, compared 

with a 16.7% survival rate in a historical control cohort [96]. de Fontbrune et al. reported use of 

eculizumab in an adult cohort of 12 patients with TA-TMA after allogeneic HSCT with severe TMA 

with neurological and/or renal involvement. At a median follow-up time of 14 months, 



OBM Transplantation 2024; 8(2), doi:10.21926/obm.transplant.2402211 
 

Page 12/20 

hematological response and overall survival were 50% and 33%, respectively, demonstrating a 

favorable response [97]. 

ECULISHU, a phase 3 randomized placebo-controlled study did not show clear benefit of using 

early eculizumab on duration of renal replacement therapy in patients with milder presentation. 

However, the study excluded patients with severe complications for ethical reasons [98]. 

Gonzales et al. reported the use of ravulizumab for TA-TMA due to medication availability instead 

of eculizumab. The patient demonstrated response within 2 weeks after initiation of ravulizumab, 

with a total of 5 maintenance doses leading to successful complement blockade and clinical 

improvement [99]. 

Literature in solid organ transplant recipients is primarily found in renal transplant recipients, 

with eculizumab as the primary complement directed therapy. Eculizumab has been successfully 

used in de novo TA-TMA after kidney transplantation [75]. Portolés et al. described 22 patients with 

TA-TMA, with early (<1 month) and late (>1-month post-transplant) onset TMA. Patients responded 

better with a shorter time between TMA diagnosis and beginning of treatment with eculizumab 

[100]. Dhakal et al. describe a retrospective analysis of 26 cases, with TA-TMA occurring in 17 (65%) 

solid organ transplant (41 kidney, 29 small bowel, 12 liver, 12 simultaneous pancreas and kidney, 

and 6 combined lung and kidney) and 9 (35%) stem-cell transplant recipients. The median time to 

initiation of eculizumab from transplant was 63 days, with 92% of cohort recovering after 

eculizumab administration. 18 (95%) of patients received induction therapy, and maintenance 

therapy was continued in 20 (77%) patients [101]. 

With the treatment, a statistical difference was noted in renal recovery, with most of it occurring 

within the first 30 days and the median time for platelets to normalize was about 4 days. Factors 

such as shorter time between the clinical presentation and first dose of eculizumab, younger age, 

lower creatinine, and lower platelet counts were associated with better renal recovery and function 

with eGFR > 60 ml per min at 6 months [102]. 

The dosing of eculizumab and ravulizumab are not well established in TA-TMA; however, the 

established dosing regimen for aHUS is commonly used, including an induction phase, followed by 

a maintenance phase. In cases where complement directed therapy is utilized alongside plasma 

exchange, supplemental doses are recommended before, or within 1 hour, after plasma exchange 

[93, 94]. The utilization of complement directed therapy should be individualized and consider 

potential benefits versus risks and adverse effects including, meningococcal infection and infusion-

related reactions. Administration of meningococcal vaccinations within 2 weeks of initiation, is 

recommended with the use of eculizumab and ravulizumab. Often patients are immunosuppressed, 

prophylactic antibiotics should be considered, in addition to vaccination, for the entire duration of 

treatment with eculizumab or ravulizumab. The duration of treatment with complement directed 

therapy is unknown; however, discontinuation of therapy can be considered once complications of 

TA-TMA have completely resolved, including resolution of hematologic markers and complement 

blockade determined by CH50 levels. 

5. Conclusions 

Thrombotic Microangiopathy (TMA) characterized by microangiopathic hemolytic anemia 

(MAHA) and thrombocytopenia, often targets vasculature in kidneys, brain, gastrointestinal system, 

heart, and skin. If unrecognized and or if left untreated can result in severe multiorgan failure and 
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death. Treatment should not be delayed while waiting for TTP and complement specific tests. In 

addition to the identification of causative factors and their treatment, terminal complement 

blockade should be considered especially if there is a suspicion for complement mediated TMA. 
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