Development of a Novel Pipette Tip-Aided Cell Cloning Method for The Effective Isolation of Genome-Edited Porcine Cell
Abstract
(ISSN 2577-5790)
OBM Genetics is an international Open Access journal published quarterly online by LIDSEN Publishing Inc. It accepts papers addressing basic and medical aspects of genetics and epigenetics and also ethical, legal and social issues. Coverage includes clinical, developmental, diagnostic, evolutionary, genomic, mitochondrial, molecular, oncological, population and reproductive aspects. It publishes a variety of article types (Original Research, Review, Communication, Opinion, Comment, Conference Report, Technical Note, Book Review, etc.). There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
Publication Speed (median values for papers published in 2023): Submission to First Decision: 5.1 weeks; Submission to Acceptance: 17.0 weeks; Acceptance to Publication: 7 days (1-2 days of FREE language polishing included)
Special Issue
Genome Editing
Submission Deadline: October 31, 2020 (Closed) Submit Now
Guest Editor
Masahiro Sato, Ph.D.
Professor, Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
Research Interests: Molecular biology; biotechnology; genome editing; gene expression; mice model; xenotransplantation; immunofluorescence staining
About this topic
Genome editing, genome engineering, or gene editing is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly insert genetic material into a host genome, genome editing targets the insertions to specific locations.
Genome editing is of great interest in the prevention and treatment of human diseases. Currently, most research on genome editing is done to understand diseases using cells and animal models. Scientists are still working to determine whether this approach is safe and effective for use in people. It is being explored for a wide variety of diseases, including single-gene disorders such as cystic fibrosis, hemophilia, and sickle cell disease. It also holds promise for the treatment and prevention of more complex diseases, such as cancer, heart disease, mental illness, and human immunodeficiency virus (HIV) infection. In plants, genome editing is seen as a viable solution to the conservation of biodiversity. Gene drive is a potential tool to alter the reproductive rate of invasive species, though there are significant associated risks. Therefore, in this special issue, we will seek articles that reflect the research on genome editing. Original research reports, review articles, communications, perspectives, etc., are invited in all areas pertinent to this topic.
Planned Paper
Title: In vitro electroporation facilitates simultaneous genome editing induction at least 3 multi-loci in porcine parthenotes.
Authors: Masahiro Sato, Emi Inada, Issei Saitoh, Hiroaki Kawaguchi, Akihide Tanimoto, and Kazuchika Miyoshi
Abstract: Clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system allows simultaneous genome editing towards multiple target loci using several guide RNAs (gRNAs) together with Cas9 in various biological systems. In vitro electroporation (EP) of zygotes in the presence of gRNA/Cas9 complex called ribonucleoprotein (RNP) has been widely employed for production of genome-edited rodents. This approach is powerful and convenient comparing to microinjection-based production of genome-edited rodents, because large number of zygotes (30-50 embryos per in vitro EP) can be genome-edited at once. In contrast with the case of mice, only a few cases are known for successful production of genome-edited porcine embryos and born piglets by using in vitro EP. In this study, we evaluated the ability of in vitro EP to introduce multiple substances into porcine parthenotes when 2 fluorescence-labelled dextrans or 3 gRNAs complexed with Cas9 protein are used.
Title: Breeding “CRISPR” Crops
Authors: Fawzy Georges
Abstract: The challenges which face the world today can be summed up in a few words: An increasingly congested world with dwindling areas of viable cultivated land and accelerating climate instability. The combined effect of these realities, together with the trend of striving to extend the average human age, puts the world on the path toward future catastrophe. This situation makes it imperative to seek realistic and practical solutions, which must be able to address food shortages and climate problems in a timely manner. In this article, an elucidative argument is presented with the intention of revealing the need for humanity to step back and consider more objectively the long-term benefits of crop-genome-editing for food security, looking beyond the unfounded negative notions about safety issues. If the inaccurate interpretations, formulated by some political scientists and (or) policy makers, which claim the CRISPR/Cas technology as being another form of crop genetic modification stay unabated, they will continue to becloud the minds of decision makers and the public at large with misleading information. The technology will eventually be dismissed as a mere academic exercise with little or no benefit to future generations.
Manuscript Submission Information
Manuscripts should be submitted through the LIDSEN Submission System. Detailed information on manuscript preparation and submission is available in the Instructions for Authors. All submitted articles will be thoroughly refereed through a single-blind peer-review process and will be processed following the Editorial Process and Quality Control policy. Upon acceptance, the article will be immediately published in a regular issue of the journal and will be listed together on the special issue website, with a label that the article belongs to the Special Issue. LIDSEN distributes articles under the Creative Commons Attribution (CC BY 4.0) License in an open-access model. The authors own the copyright to the article, and the article can be free to access, distribute, and reuse provided that the original work is correctly cited.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). Research articles and review articles are highly invited. Authors are encouraged to send the tentative title and abstract of the planned paper to the Editorial Office (genetics@lidsen.com) for record. If you have any questions, please do not hesitate to contact the Editorial Office.
Welcome your submission!
Publication
Development of a Novel Pipette Tip-Aided Cell Cloning Method for The Effective Isolation of Genome-Edited Porcine CellAbstract Direct colony cloning of adherent mammalian cells using rings or dilution cloning has been used frequently for obtaining stable transfectants after gene delivery. As an alternative to these methods, successful isolation of the cells in a single colony is possible by placing a trypsin-immersed small paper disk onto the colony and subsequentl [...] |
In vitro Electroporation in the Presence of CRISPR/Cas9 Reagents as a Safe and Effective Method for Producing Biallelic Knock-Out Porcine EmbryosAbstract The production of genetically modified (GM) pigs is considered valuable in biomedical research for the development of model animals for various diseases and pigs with resistance against viral infection. The porcine genome may be modified using several methods, such as somatic cell nuclear transfer (SCNT) using GM cells as the SCNT donor, direc [...] |
Successful i-GONAD in Brown Norway Rats by Modification of in vivo Electroporation Conditionsby
Shuji Takabayashi
,
Takuya Aoshima
,
Yukari Kobayashi
,
Hisayoshi Takagi
,
Eri Akasaka
and
Masahiro Sato
Abstract Improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) was developed for in situ genome editing of the preimplantation embryos present within the oviductal lumen of mice. This method is based on intra-oviductal instillation of genome editing components and subsequent in vivo electroporation (EP) in the entire oviduct. Therefore [...] |
In vivo Hepatocyte Genome Manipulation via Intravenous Injection of Genome Editing ComponentsAbstract The liver is a major organ with a wide range of functions, including detoxification, protein synthesis, and bile production. Liver dysfunction causes liver diseases such as hepatic cirrhosis and hepatitis. To explore the pathogenesis of these liver diseases, and the therapeutic agents against them, mice have been widely used as animal models [...] |
Breeding “CRISPR” Crops1Abstract The challenges which face the world today can be summed up in a few words: An increasingly congested world with dwindling areas of viable cultivated land and accelerating climate instability. The combined effect of these realities, together with the trend of striving to extend the average human life, puts the world on the path toward future [...] |
2023 | ||
CiteScore | SJR | SNIP |
0.4 | 0.160 | 0.093 |
TOP