Current Issue: 2019  Archive: 2018   2017  

Special Issue

Alternative Splicing: A Key Process in Development and Disease

Submission Deadline: December 31, 2019 (Open)                Submit Now

Guest Editor

Michael R. Ladomery, PhD
Faculty of Health and Applied Sciences, University of the West of England, Bristol; Frenchay Campus,
Coldharbour Lane, Bristol BS16 1QY, UK
E-Mail: [email protected]
Research Interests: RNA biology; alternative splicing; noncoding RNA; RNA-based cancer therapies

About this topic

Soon after the discovery of pre-mRNA splicing in the late 1970s it became apparent that transcripts can be ‘alternatively spliced’ across eukaryotes. The main modes of alternative splicing are cassette exons that can be skipped; alternative splice sites that change the boundaries of exons; mutually exclusive exons; and retained introns. It is thought that over 94% of multi-exonic genes are alternatively spliced in humans. Alternative splicing is affected by regulatory sequences present within exons and introns. These are recognised by a multitude of splice factors that regulate splicing machinery access. Alternative splicing means that genes can express proteins with strikingly different characteristics. These can even have antagonistic properties (for example pro- or anti-apoptotic splice isoforms). It is then not surprising to find that alternative splicing plays a key role in development and that mutations that disrupt alternative splicing contribute to disease. Alternative splicing research provides enormous opportunities to understand fundamental biological processes; it also presents a new context in which to develop novel therapies.