(ISSN 2771-9871)
Recent Progress in Nutrition (ISSN 2771-9871) is an international peer-reviewed Open Access journal published quarterly online by LIDSEN Publishing Inc. This periodical is devoted to publishing high-quality papers that describe the most significant and cutting-edge research in all areas of nutritional sciences. Its aim is to provide timely, authoritative introductions to current thinking, developments and research in carefully selected topics. Also, it aims to enhance the international exchange of scientific activities in nutritional science and human health.
Recent Progress in Nutrition publishes high quality intervention and observational studies in nutrition. High quality systematic reviews and meta-analyses are also welcome as are pilot studies with preliminary data and hypotheses generating studies. Emphasis is placed on understanding the relationship between nutrition and health and of the role of dietary patterns in health and disease.
Topics contain but are not limited to:
It publishes a variety of article types: Original Research, Review, Communication, Opinion, Comment, Conference Report, Technical Note, Book Review, etc.
There is no restriction on paper length, provided that the text is concise and comprehensive. Authors should present their results in as much detail as possible, as reviewers are encouraged to emphasize scientific rigor and reproducibility.
Publication Speed (median values for papers published in 2024): Submission to First Decision: 7.5 weeks; Submission to Acceptance: 15.5 weeks; Acceptance to Publication: 7 days (1-2 days of FREE language polishing included)
Special Issue
Does Diet Temperature Contribute to Energy Intake? Call for Study Protocols
Submission Deadline: April 15, 2025 (Open) Submit Now
Guest Editor
American Physical Society, Maryland, MD, United States.
The Nutrition Society, London, UK
Website1 | Website2 | Website3 | E-Mail
Research interests: Diet temperature; energy intake; energy conservation; heat shock proteins; clinical trial; design of study
About This Topic
First law of thermodynamics, also known as Law of Conservation of Energy, states that energy can neither be created nor destroyed in an isolated system. The human body has its own mechanisms to adapt to changing temperatures; however, it is possible that greater or lower temperatures of food and beverages (referred to as dietary temperature), impose some implications on the energy demands of the body. Based on diet composition, chewing habits, amount of fluids (and their corresponding temperature) ingested, the human body is exposed to a wide range of temperatures. This exposure affects the whole gastrointestinal tract, being greatest at the mouth followed by the esophagus and stomach, with the latter exposed at a greater time course. Indeed, there has been several studies relating dietary temperatures to gastric function, frequency of gastric myoelectrical activity, gastric emptying time, gastrin release, gastric acid secretion, esophageal cancer, and intraluminal upper gastrointestinal temperature and motility. Although when it comes to energy metabolism, it has been assumed that greater dietary temperatures are dissipated during digestion and do not contribute to energy balance.
One of the most immediate responses body cells have to greater temperatures is induction and increased synthesis of Heat Shock Proteins (HSPs), especially HSP70 and HSP90. HSP70 and HSP90 possess N-terminal ATPase fragment at their end and tightly regulate ATPase activity and ATP hydrolysis, providing the heat energy at to drive ADP → ATP process. Indeed, cells exposed to greater temperatures increase HSP activity, and the time-profile of peripheral blood mononuclear leukocytes HSP70 response to in vitro heat shock is temperature-dependent. For instance, with in vitro hyperthermic conditions (40-41°C degrees), the time-course was characterized by a sharp rise in HSP70 concentrations immediately after heat shock treatment (P < 0.05 for 40 degrees C at 0 h), followed by a steady and progressive decline over time.
It is shown that HSPs can extract energy from the environment (here, dietary temperatures) and thereby, contribute to energy balance. On the other hand, water has characteristically high heat capacity, indicating that temperature of ingested fluids and meals should contribute to energy homeostasis, although it is possible that much of the thermal energy in food is dissipated once ingested and does not contribute to energy balance. However, underlying molecular mechanisms by which diet temperature might contribute to energy balance is yet to be explored. It can be hypothesized that the temperature of ingested foods/fluids may influence energy homeostasis through expression of heat shock proteins (HSPs), especially HSP70 and HSP90, which are expressed to a greater extent in obesity and known to cause deficits in glucose metabolism. It is meanwhile possible that other mechanisms are involved.
To date, no experimental animal studies or clinical trials are available regarding potential effects of hot meals and fluids on weight status nor about its confounding effects in data analysis. To find out potential mechanism, there is an indispensable need to conduct animal studies and clinical trials. We have elsewhere proposed a randomized protocol to experimentally test this hypothesis.
This Research Topic is aimed at discovering forms of unrecognized bias brought about by the diet temperature in physiologic, nutritional and metabolic studies. It is hoped that it will help to uncover diet temperature related biases in the interpretation of physiologic studies, clinical findings, methodological practices, registered clinical trials, cohort studies and comparative studies. We call for original papers, study protocols, simulated experiments and synthetic reviews and opinions as a basis for future studies exploring the potential mechanisms by which greater temperatures of foods and beverages might influence energy balance in humans and animal models under physiological and pathological conditions. It is expected that submitted manuscripts will provide novel technical and methodological insight. This Research Topic would like to explore diet temperature related bias in clinical and preclinical articles focusing on but not limited to the following topics:
Manuscript Submission Information
Manuscripts should be submitted through the LIDSEN Submission System. Detailed information on manuscript preparation and submission is available in the Instructions for Authors. All submitted articles will be thoroughly refereed through a single-blind peer-review process and will be processed following the Editorial Process and Quality Control policy. Upon acceptance, the article will be immediately published in a regular issue of the journal and will be listed together on the special issue website, with a label that the article belongs to the Special Issue. LIDSEN distributes articles under the Creative Commons Attribution (CC BY 4.0) License in an open-access model. The authors own the copyright to the article, and the article can be free to access, distribute, and reuse provided that the original work is correctly cited.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). Research articles and review articles are highly invited. Authors are encouraged to send the tentative title and abstract of the planned paper to the Editorial Office (rpn@lidsen.com) for record. If you have any questions, please do not hesitate to contact the Editorial Office.
Welcome your submission!
TOP